
A Racket-Based Robot to Teach First-Year Computer
Science

K.Androutsopoulos, N. Gorogiannis, M. Loomes, M. Margolis,
G. Primiero, F. Raimondi, P. Varsani, N. Weldin, A. Zivanovic

School of Science and Technology
Middlesex University

London, UK
{K.Androutsopoulos|N.Gkorogiannis|M.Loomes|M.Margolis|G.Primiero|F.Raimondi|P.Varsani|N.Weldin|A.Zivanovic}@mdx.ac.uk

ABSTRACT
A novel approach to teaching Computer Science has been de-
veloped for the academic year 2013/14 at Middlesex Univer-
sity, UK. The whole first year is taught in an holistic fashion,
with programming at the core, using a number of practical
projects to support learning and inspire the students. The
Lisp derivative, Racket, has been chosen as the main pro-
gramming language for the year. An important feature of
the approach is the use of physical computing so that the
students are not always working “through the screen”, but
can experience physical manifestations of behaviours result-
ing from programs. In this paper we describe the MIddlesex
Robotic plaTfOrm (MIRTO), an open-source platform built
using Raspberry Pi, Arduino, and with Racket as the core
coordination mechanism. We describe the architecture of
the platform and how it can be used to support teaching of
core Computer Science topics, we describe our teaching and
assessment strategies, we present students’ projects and we
provide a preliminary evaluation of our approach.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Theory,Human Factors.

Keywords
Educational approaches and perspectives, Experience reports
and case studies

1. INTRODUCTION
Designing an undergraduate programme requires a num-

ber of choices to be made: what programming language
should we teach? Which development environments? Should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
European LISP Symposium 2014 Paris, France
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

mathematical foundations play a dominant role, or will they
discourage students from attending? Moreover, the cur-
rent stand of our educational system with respect to in-
dustry seems to rely on a discouraging contradiction: on
the one hand, it is tempting to market new undergraduate
programmes with the claim that they will provide the skills
required by industry. On the other hand, we argue that
the only certainty is that students will live in a continuously
evolving environment when they leave education, and that
it is not possible to forecast market requests in a few years’
time.

In the design of a new Computer Science programme for
the academic year 2013/2014 we have been driven by the
requirement that we should prepare students for change,
and that we should teach them how to learn new skills au-
tonomously. Students entering academia may not be pre-
pared for this: they could be arriving from high school where
the focus is on achieving good grades in specific tests. How
do we achieve the objective of preparing good learners?

We decided to employ the Lisp-derivative Racket to sup-
port the delivery of a solid mathematical background and
the creation of language-independent programming skills.
Moreover, we decided to work on real hardware so that the
students could appreciate the result of executed code. The
work is organised around projects involving Arduino, Rasp-
berry Pi, and a Robot that we describe here.

We have completely revised our delivery and assessment
methods to support our aims. There are no modules or
courses and the activities run seamlessly across the projects.
The assessment method is not based on exams, but on Stu-
dent Observable Behaviours (SOBs), that are fine-grained
decompositions of learning outcomes providing evidence of
students’ progress.

In this paper we focus on how Racket has provided a solid
support for our new strategy: in Section 2 we describe the
overall structure of the first year and the progress of stu-
dents from simple examples to more complex scenarios; this
progress enables the students to control a real robot, de-
scribed in Section 3. In section 4 we describe our assessment
strategy and we present a tool to support it. An evaluation
of our approach is provided in Section 5, where we describe
students’ projects and various measures for engagement, at-
tendance and overall progress.

2. OVERVIEW OF THE FIRST YEAR
In our new first year of Computer Science, there are no

modules or courses and all the activities run across vari-

ous sessions during the week. The idea is that employing
a problem-driven approach, we give students the confidence
needed to study independently. In essence, this is our way
to teach them “how to learn”.

Each week consists of the following structured sessions:
lecture, design workshop, programming workshop, physical
computing workshop, synoptic workshop.

General Lecture. A two-hour lecture is given, introducing
or developing a topic and related projects. However,
this is not where learning should happen: we envisage
our lectures as motivational and high-level descriptions
of the activities that will follow during the week.

Design Workshop. In these workshops students develop
skills required to work in a design environment. Design
might be built in software (programming) or hardware,
it might involve bolting existing systems together (sys-
tems engineering), or developing processes for people
who are using the systems (HCI). We cover ways of
generating ideas, ways of representing designs so that
they can be discussed, professional ways of criticising
designs and ways teams of people work together to
produce and deliver designs. Delivery happens in an
open-space flexible environment, with large tables that
can be moved around and arranged in small groups,
and the workshop lasts two hours. Students may be
asked to present in front of the class the result of their
work.

Programming Workshop. In the two-hour programming
workshops we help the students with exercises, master-
classes, coaching sessions, to develop their fluency in
coding. We have restricted the first year to looking
at just one main language, Racket [10], a functional
language derived from Lisp. Racket should be new to
most students, thus ensuring that the students are all
at the same level of experience so that we can focus on
teaching best practises rather than undoing bad habits.
The choice of a programming language was one of the
most carefully debated issues in the design of this new
course. Racket was selected for the availability of a
number of libraries that support teaching, for its inte-
grated environment (DrRacket) that allows obtaining
results with very minimal set-up, and for the availabil-
ity of a large number of extensions including libraries
to interact with networking applications such as Twit-
ter, libraries for Arduino integration and environments
for graphics, music and live-coding.

Physical Computing Workshop. Software systems have
increasingly tangible outputs in the real world. It is
very likely that students currently at university, when
employed, will commonly work with software control-
ling physical aspects of a system, such as managing
a self-driving car, as opposed to standard IT-related
sofware such as, e.g., relational databases. As a result,
we think that students should be exposed to a wide
variety of physical devices that are crucial to under-
standing computer science. These will range from sim-
ple logic gates (the building blocks of every computer
currently commercially available), to microcontrollers
(Arduino) and other specialist devices. The emphasis
is on programming using Racket, not building, these

devices. In this two-hour workshop we also explore
how to interface these, and how people interact with
computers using such devices.

Synoptic Workshop. This is where we “pull everything
together” by taking multiple strands of activity and
fit all of the bits together. It is longer than the other
workshops (4 hours) to allow time to design, build,
test and discuss projects. This is not simply about
‘applying’ what has been learnt - it is about learning
and extending what is known in a larger context.

2.1 Growing Racket skills
Our delivery of Racket starts with the aim of supporting

the development of a traffic light system built using Ar-
duino boards [1, 8], LEDs and input switches. The final
result should be a system with three traffic lights to control
a temporary road-work area where cars are only allowed in
alternate one-way flow and with a pedestrian crossing with
request button.

Arduino is a microcontroller that can run a specific code
or can be driven using a protocol called Firmata [2]. We em-
ploy this second approach to control Arduino boards from
a different machine. To this end, we have extended the Fir-
mata Racket library available on PLaneT [12] to support
Windows platforms, to automatically recognise the USB/se-
rial port employed for connection and to support additional
kinds of messages for analog output and for controlling a
robot (see next section). Our library is available from [11].

Students employ this library in the first week to start in-
teracting with DrRacket using simple code such as the fol-
lowing:

1 #lang racket

2

3 (require "firmata.rkt")

4

5 (open-firmata)

6 (set-pin-mode! 13 OUTPUT_MODE)

7 (set-arduino-pin! 13)

8 (sleep 1)

9 (clear-arduino-pin! 13)

This code turns an LED on for a second and then turns it
off. Students then start working on lists and see traffic lights
as lists of LEDs. Higher order functions are introduced to
perform actions on lists of LEDs, such as in the following
code that sets Arduino PINs 7, 8 and 9 to OUTPUT mode:

1 #lang racket

2

3 (require "firmata.rkt")

4

5 (open-firmata)

6 (define pins ’(7 8 9))

7

8 (map (lambda (pin)

9 (set-pin-mode! pin OUTPUT_MODE))

10 pins)

As part of this project students learn how to control events
in a timed loop using clocks and by making use of the Racket
function (current-inexact-milliseconds). This also en-
ables students to read the values of input switches and to
modify the control loop accordingly.

Figure 1: A screenshot of the Dungeon Game Inter-
face

The result of this project is typically approximately 200 to
500 lines of Racket code with simple data structures, higher
order functions and the implementation of control loops us-
ing clocks.

Following this Arduino project, students explore a number
of other Racket applications, including:

• A dungeon game with a GUI to learn Racket data
structures. See Figure 1.

• The Racket OAuth library to interact with the Twitter
API. A Racket bot is currently running at https://

twitter.com/mdxracket, posting daily weather fore-
cast for London. A description of this bot is available
at http://jura.mdx.ac.uk/mdxracket/index.php/Racket_
and_the_Twitter_API.

• A Racket web server to control an Arduino board.
More details about this are available at http://www.

rmnd.net/wp-content/uploads/2014/02/w2-programming.

pdf (this is the handout given to students for their pro-
gramming and physical computing workshop in one
week).

All these elements contribute towards the final project:
develop Racket applications for the Middlesex Robotic Plat-
form (MIRTO), described in the next section.

3. MIRTO ARCHITECTURE
The MIddlesex Robotic plaTfOrm (MIRTO, also known

as Myrtle), shown in Figure 2, has been developed as a flex-
ible open-source platform that can be used across different
courses; its current design and all the source code are avail-
able on-line [9]. The Middlesex Robotic platform shown is
composed of two units (from bottom to top):

1. The base platform provides wheels, power, basic sens-
ing and low level control. It has two HUB-ee wheels [3],
which include motors and encoders (to measure actual
rotation) built in, front and rear castors, two bump
sensors and an array of six infra-red sensors (mounted
under the base), a rechargeable battery pack, which is
enough to cover a full day of teaching (8 hours) and an
Arduino microcontroller board with shield to interface
to all of these. An extended version of Firmata (to

Figure 2: The Middlesex Robotic Platform

read the wheel encoders) is running on the Arduino,
which provides a convenient interface for Racket code
to control and monitor the robot.

2. The top layer (the panel on top in Figure 2) is where
higher level functions are run in Racket and consists
of a Raspberry Pi, which is connected to the the Ar-
duino by the serial port available on its interface con-
nection. The Raspberry Pi is running a bespoke Linux
image that extends the standard Raspbian image; it
includes Racket (current version 5.93), and is using
a USB WiFi adapter to enable remote connections via
SSH and general network activities. This layer enabled
us to also use cameras, microphones and text to speech
with speakers to extend the range of activities avail-
able to students. Additional layers can be added to
the modular design to extend the robots capabilities.

Students start using the robot to investigate product of
finite state machines (computing the product of the state
space of the two wheels); they then move to connecting the
Arduino layer directly to a PC, see Figure 3. We have built a
bespoke Racket module for this interaction (see Section 3.1);
from the students’ point of view, this is essentially a step
forward with respect to a “simple” traffic light system, and
they can re-use the control loops techniques employed for
the first project to interact with wheels and sensors. After
getting familiar with this library, students progress to study
networking and operating systems concepts: this allows the
introduction of the top layer, the Raspberry Pi. Students
can now transfer their code from a PC to the Raspberry Pi
and they control MIRTO over a wireless connection. This
allows the introduction of control theory to follow a line and
other algorithms (such as maze solving). We present some
details of the code in the following section.

3.1 A Racket library for MIRTO
We have built a Racket library for MIRTO that allows

students to interact with the robot by abstracting away from

Figure 3: MIRTO Arduino layer connected directly
to a PC

the actual messages exchanged at the Firmata level (see the
file MIRTOlib.rkt available from [9]). The library provides
the following functions:

• setup is used to initialise the connection between a
Racket program and the Arduino layer (this function
initialises Firmata and performs some initial set-up for
counters). Correspondingly, shutdown closes the con-
nection.

• w1-stopMotor and w2-stopMotor stop the left and the
right wheel, respectively. The function stopMotors

stop both wheels.

• (setMotor wheel power) sets wheel (either 1 or 2)
to a certain power, where power ranges between -100
(clockwise full power) and +100 (anti-clockwise full
power). (setMotors power1 power2) sets both mo-
tors with one instruction.

• (getCount num) for num ∈ {1, 2} returns the “count”
for a wheel. This is an integer counter that increases
with the rotation of the wheel. A full rotation cor-
responds to an increase of 64 units for this counter.
Given that the wheel has a diameter of 60 mm, it is
thus possible to compute the distance travelled by each
wheel.

• enableIR enables infra-red sensors (these are initialised
in an “off” state to save battery); (getIR num) (where
num ∈ {1, 2, 3}) returns the value of the infra-red sen-
sor. This is a number between 0 (white, perfectly re-
flecting surface) and 2000 (black, perfectly absorbing
surface).

• leftBump? and rightBump? are Boolean functions re-
turning true (resp. false) when a bump sensor is pressed
(resp. not pressed).

The following is the first exercise that students are asked
to do to move the wheels for one second:

1 #lang racket

2

3 (require "MIRTOlib.rkt")

4

5 (define (simpleTest)

6 (setup)

7 (setMotors 75 75)

8 (sleep 1)

9 (stopMotors)

10 (shutdown)

11)

This code moves the wheels for one second and then stops
them. Students test this code using the Arduino layer only,
as shown in Figure 3. Similarly to the traffic light project,
students then move to more complex control loops and start
using the Raspberry Pi layer using SSH and command-line
Racket. The following snippet of code extracted from a con-
trol loop prints the values of the infra-red sensors every two
seconds:

1 ;; [...]

2 (set! currentTime (current-inexact-milliseconds))

3 ;;

4 (cond ((> (- currentTime previousTime) 2000)

5 (map (lambda (i)

6 (printf " IR sensor ~a -> ~a\n" i

7 (getIR i)))

8 ’(1 2 3))

9 (set! previousTime

10 (current-inexact-milliseconds))

11)

12)

13 ;; [...]

The functions provided by the library allow the imple-
mentation of a Racket-based PID controller [5] for MIRTO.
Students are also introduced to maze solving algorithms,
which can be implemented using the infra-red sensors and
the bump sensors. The Racket code for both programs is
available from [9] in the servos-and-distance branch.

After these exercises and guided projects, students are
asked to develop an independent project. We report some
of these projects in Section 5.

4. ASSESSMENT STRATEGY
As mentioned above, the delivery of the first year of Com-

puter Science has been substantially modified, modules have
been removed and students are exposed to a range of activ-
ities that contribute to projects.

As a result, we have introduced a new assessment strategy
to check that students have understood and mastered the
basic concepts required during the second year and are able
to demonstrate these through practical demonstration. We
use the term Student Observable Behaviours (SOBs)
to refer to fine-grained decompositions of learning outcomes
that provide the evidence that the students are progressing.
Passing the year involves demonstrating SOBs. There are
three types of SOBs:

1. Threshold level SOBs are those that must be ob-
served in order to progress and pass the year. Students
must pass all of these; a continuous monitoring of the
progress using the tool described below ensures that
any student who is at risk of not doing so is offered
extra support to meet this level.

2. Typical level SOBs represent what we would expect
a typical student to achieve in the first year to obtain
a good honours degree. Monitoring this level provides
a very detailed account of how each student is meeting
expectations. Students are supported in their weak
areas, encouraged not to hide them and not to focus
only on the things they can do well. Our aspiration
is to get the majority of students to complete all the
typical level SOBs.

3. Excellent level SOBs identify outstanding achieve-
ments. These are used to present real challenges of
different types to students who have demonstrated to
be ready for them.

Projects were designed to offer assessment opportunities
both en-route and in the final project delivery. Projects
are posed in such a way as to ensure that students who en-
gage with the process have the opportunity to demonstrate
threshold level SOBs. As a result, “failure” to successfully
complete a project does not lead to failure to complete the
threshold SOBs. Projects have a well-defined set of core
ideas and techniques (threshold), with suggestions for en-
hancements (typical), and open-ended questions (excellent).
Note that there is no concept of averaging or summation:
in theory a student could complete all of the excellent level
SOBs, but fail the year as a consequence of not meeting one
threshold SOB. This is virtually impossible in practice, as
staff are aware that there are outstanding threshold SOBs,
and take the opportunity of observing them en-route. Of
course, if a student really can’t do something that has been
judged threshold, we will deem it a failure.

Students who fail to demonstrate all threshold SOBs by
the end of the academic year will, at the discretion of the
Examination Board and within the University Regulations,
be provided with a subsequent demonstration opportunity.
This will normally be over the Summer in the same academic
year. Resources including labs and support staff will be
made available during this period.

The process of assessment and feedback is thus continuous
via a “profiling” method. This method allows us to track
every student in detail, to ensure that we are supporting
development and progression. This means we have compre-
hensive feedback to the teaching team available in real time.
Also, students have a detailed mechanism available to mon-
itor their own progress. This includes ways of viewing their
position relative to our expectations, but also to the rest
of the group. The students have multiple opportunities to
pass SOBs. There are no deadlines and SOBs can be demon-
strated anytime during the year, although each SOB carries
a “suggested” date range in which it should be observed. Al-
though the formal aspect of the profiling method appears
to be a tick-box exercise, discussion and written comments
(where appropriate) are provided at several points through-
out the year.

4.1 The Student Observable (SOB) Tool
Overall, we have defined 119 SOBs: 34 threshold, 50 typ-

ical and 35 excellent. In terms of Racket-specific SOBs, 10
of them are threshold and include behaviours such as “Use
define, lambda and cond, with other language features as
appropriate, to create and use a simple function.”; 15 SOBs
are typical, such as “Define functions to write the contents
of a data structure to disk and read them back”; there are 13

Figure 4: Entering and searching SOBs

Figure 5: Student list with SOBs

SOBs at the excellent level, for instance: “The student can
build an advanced navigation system for a robot in Racket
that uses different data streams”

Our first year cohort consists of approximately 120 stu-
dents. An appropriate tool is crucially needed to keep track
of the progress of each student and to alert the teaching team
as soon as problems arise (students not attending, students
not being observed for SOBs, etc.). We have developed an
on-line application that takes care of this aspect, in collab-
oration with research associates in our department.

Figure 4 presents a screenshot of the tool when entering or
querying SOBs. In addition to this facility, the tool provides
a set of graphs to monitor overall progress and attendance.
Background processes generate reports for the teaching team
about non-attending or non-performing students. As an ex-
ample, Figure 5 shows in tabular form the list of students,
highlighting those who have (threshold) SOBs that should
have been observed at the current date.

Figure 6 shows a screenshot of the “observation” part of
the tool. In this case a demo student is selected and then
the appropriate SOBs can be searched using the filters on
the right. Different colours are used to highlight the most
relevant SOBs. In addition, for each level a progress bar dis-
plays the overall progress of the student in green against the
overall average progress of the cohort (vertical black bar);
in this case, the student is slightly ahead of the overall class
for threshold SOBs. The “Notes” tab can be used to provide
feedback and to record intermediate attempts at a SOB. In
addition to the design presented in the figure we have also
implemented a tablet-friendly design to be used in the labs.

Students are provided a separate access to the database to
check their progress. A dashboard provides immediate and

Figure 6: Observing a SOB for a student

Figure 7: Student view: position with respect to
class

quick access to key information (number of SOBs expected
to be observed in the coming week, number of SOBs that
are “overdue”, etc.). More detailed queries are possible for
self-assessment with respect to the overall set of SOBs and
with respect to the cohort in order to motivate students.
As an example, Figure 7 shows the student progress (green
bar) with respect to the whole class (yellow bars) for typical
SOBs.

As described in the following section, this tool has enabled
the teaching team to provide continuous support to the stu-
dents who needed it most, by identifying non-attending or
dis-engaged students very early in the year.

5. EVALUATION
We provide here an overview of two forms of evaluation:

a list of students’ projects built using Racket and MIRTO,
and an evaluation of average attendance, progression rate
and engagement.

5.1 Student projects
In the final 3 weeks of their first year, students have been

asked to work in teams and submit projects using MIRTO
and Racket. Members of staff have provided support, but all
the projects have been designed and implemented entirely
by the students. The following is a list of some of these final
projects.

• Dancing robots: this has been a popular theme, with
more than one group working at coordinating the move-
ment of multiple robots in a choreography of their
choice. Two example videos are available at https://

www.youtube.com/watch?v=V-NfC4WK2Sg and https:

//www.youtube.com/watch?v=nMjdH9TCKOU.

• A student has developed a GUI running on the Rasp-
berry Pi. By tunnelling an X connection through SSH
the robot can be controlled from a remote computer.
The project also includes the possibility of taking pic-
tures and a sequence of instructions to be executed.
The video is available at the following link: https:

//www.youtube.com/watch?v=FDi2TSCe3-4

• A student has implemented a web server running on
the Raspberry Pi, so that the robot can be controlled
using a browser. The web interface enables keyboard
control of the movements and detects the values of
infra-red and bump sensors. Additionally, from the
web interface a user could take a picture or start line
following (on a separate thread). Finally, the stu-
dent has also implemented a voice recognition feature
by combining Racket and Pocketsphinx [4]: when the
name of a UK city is pronounced, the local weather is
retrieved. The video is available at this link: https:

//www.youtube.com/watch?v=lwsG0lD55wk.

• Finally, a student has taken a commercially available
robotic platform (4tronix initio robot) built on top of
Arduino and has modified it by installing firmata and
by adding a Raspberry Pi running Racket. To this
end, the student has developed a bespoke version of
MIRTOlib.rkt for this new robotic platform, adding
support for servo motors. The video of this project
is available at this link: https://www.youtube.com/

watch?v=hfByxWhyXkc.

More importantly, through the projects and the threshold
SOBs we have been able to assess the ability of nearly all
students to control a robot from Racket, thus ensuring that
they have achieved the minimal level of familiarity with the
language to progress to the second year.

5.2 Attendance, engagement and progression
The teaching team has been concerned with various risks

associated to this new structure of delivery for a whole first
year cohort:

• Would students attend all the sessions, or only drop-in
to tick SOBs?

• Would students engage with the new material?

• Would students focus on threshold SOBs only, and not
progress beyond this level?

The delivery of this year has now nearly completed, with
only two weeks left in our academic year. In “standard”
programmes these are typically dedicated to revision before
the exams. In our case, instead, we are in a position of
analysing the data collected over the year to answer the
questions above.

5.2.1 Attendance
Figure 8 shows the weekly attendance rate in percentage

for the new first year programme (in blue) and for two other
first year modules from another programme (in green and
red, anonymised). The graph displays attendance per week;

Figure 8: Weekly attendance (comparison)

a student is considered to have attended in a week if s/he
has attended at least one session during the week. “Stan-
dard”modules have an attendance ranging between 50% and
70% for a “core” module with compulsory attendance, and
between 40% and 60% for a “non-core” module. There is
also a decreasing trend as weeks progress.

We have been positively surprised by the attendance for
the new programme, which has been oscillating between 80%
and 90% with only a minimal drop over the year (the two
“low” peaks around week 10 and 17 correspond to British
“half-term” periods, when family may go on holiday).

5.2.2 Engagement
Engagement is strictly correlated with attendance, but

it may be difficult to provide a direct metric for it. We
typically assess engagement by checking log-in rates in our
VLE environment and, in our case, we could also measure
SOB progression. We were able to identify approximately
10% of the cohort being “not engaged”. Thanks to our tool,
we have been able to address these students individually.

In addition to SOB progression, we could also measure
usage of the MIRTO platforms. We have built 10 yellow and
10 blue robots. We have used 4 of these for research and 2
for demo purposes, leaving a total of 7 blue and 7 yellow
robots for teaching in the workshops. There are typically 20
students allocated to each workshop, working in groups of 2
or 3 (see Figure 9); all sessions required all robots, showing
that all students were engaged with the material.

5.2.3 Progression
Finally, there was a risk that the majority of the class

would focus just on the achievement of threshold SOBs. Our
first year is not graded and therefore, once the threshold
SOBs have been achieved, there is no formal difference be-
tween students with different numbers of SOBs.

Besides anecdotal evidence of students working on op-
tional projects, our monitoring tool has allowed us to en-
courage the best students to work on new challenges for the
whole year. This has resulted in the vast majority of stu-
dents progressing beyond the “threshold” level. This is con-
firmed by the results presented in Figure 10: the majority of
students has progressed well beyond the 34 threshold SOB

Figure 9: Example lab session

mark (red line in the figure). The same trend is confirmed if
Racket-specific SOBs are considered. Figure 11 shows that
approximately 70% of the students have completed SOBs
beyond the required threshold level (the same distribution
occurs for other SOB categories).

The tool has also shown interesting approaches to this
new structure, both in general and for Racket-specific SOBs:
some students have focussed on threshold SOBs first and
only moved to typical and excellent SOBs later. Other stu-
dents, instead, have worked at typical and excellent SOBs
with many threshold SOBs still outstanding.

6. CONCLUSION
In designing a new Computer Science programme for Mid-

dlesex University we have decided to make use of Racket
and to design and build a robotic platform to support our
delivery.

Many of the elements in this approach have been tried
elsewhere, including: problem-based learning, assessment
through profiling and using Lisp as a first programming
language. We believe, however, that this programme takes
these ideas further than previously, and also blends these in
ways that are unique. The integration of Lisp (Scheme) and
formalisms in an holistic way introduced at Hertfordshire
by one of the authors many years ago [6], but only in the
context of a single module. Several years earlier a highly
integrated curriculum was designed in a project funded by a
large company in the UK, to develop formal methods in soft-
ware engineering practice [7], but this was for small cohorts
of students at Masters level.

To the best of our knowledge, this is the first time that this
approach is applied at such a large scale. The preparation
of this new programme has required the joint effort of a
large team of academics and teaching assistants for more
than a year before the actual delivery. However, the results
obtained are very encouraging: attendance and engagement
are well above average, and the large majority of students
are progressing beyond the level required to pass this first
year.

Figure 10: SOB overview (end of year)

Figure 11: Threshold SOBs for Racket (end of year)

7. REFERENCES
[1] M. Banzi. Getting Started with Arduino. O’Reilly

Media, 2008.

[2] The Firmata protocol. http://firmata.org/.
Accessed: 2014-03-20.

[3] The MIddlesex Robotic plaTfOrm (MIRTO). http:
//www.creative-robotics.com/About-HUBee-Wheels.
Accessed: 2014-03-20.

[4] D. Huggins-Daines, M. Kumar, A. Chan, A.W. Black,
M. Ravishankar, and A.I. Rudnicky. Pocketsphinx: A
free, real-time continuous speech recognition system
for hand-held devices. In IEEE International
Conference on Acoustics, Speech and Signal
Processing, ICASSP 2006, volume 1, pages 185–188,
2006.

[5] M. King. Process Control: A Practical Approach. John
Wiley & Sons, 2010.

[6] M. Loomes, B. Christianson, and N. Davey. Formal
systems, not methods. In Teaching Formal Methods,
volume 3294 of Lecture Notes in Computer Science,
pages 47–64. 2004.

[7] M. Loomes, A. Jones, and B. Show. An education
programme for software engineers. In Proceedings of
the First British Software Engineering Conference,
1986.

[8] M. Margolis. Arduino Cookbook. O’Reilly Media, 2011.

[9] The MIddlesex Robotic plaTfOrm (MIRTO).
https://github.com/fraimondi/myrtle. Accessed:
2014-03-20.

[10] The Racket Language. http://racket-lang.org.
Accessed: 2013-10-21.

[11] Racket Firmata for Middlesex Students.
https://bitbucket.org/fraimondi/racket-firmata.
Accessed: 2014-03-20.

[12] Racket Firmata. http://planet.racket-lang.org/
display.ss?package=firmata.plt&owner=xtofs.
Accessed: 2014-03-20.

