
UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/13/15

A Decision Procedure for Satisfiability

in Separation Logic with Inductive

Predicates

July 12, 2013

James Brotherston Carsten Fuhs Nikos Gorogiannis
Juan Navarro Perez

Abstract

In this paper we show that the satisfiability problem for a fragment of separation
logic with general inductively defined predicates, commonly employed in pro-
gram verification, is decidable. Our decision procedure computes a fixed point
corresponding to the “base” of an inductive predicate that exactly characterises
its satisfiability. The decision procedure then extends from inductive predi-
cates to arbitrary separation logic formulas in our fragment in a straightforward
manner.

A complexity analysis of our decision procedure shows that it runs, in the
worst case, in exponential time. This is optimal since we also show the sat-
isfiability problem for our inductive predicates to be EXPTIME-complete (by
reduction from the succinct circuit value problem). In addition, we show that
when the arity of predicates is bounded by a constant, the problem becomes
NP-complete.

Finally, we provide an implementation of our decision procedure, and analyse
its performance on a range of formulas that are either automatically generated
or else encountered in the separation logic literature. For the large majority of
these test cases, our tool reports times in the low milliseconds.

A Decision Procedure for Satisfiability in Separation Logic
with Inductive Predicates

James Brotherston ∗ Carsten Fuhs † Nikos Gorogiannis ‡

Juan Navarro Pérez
Dept. of Computer Science, University College London, UK

Abstract
In this paper we show that the satisfiability problem for a frag-
ment of separation logic with general inductively defined predi-
cates, commonly employed in program verification, is decidable.
Our decision procedure computes a fixed point corresponding to
the “base” of an inductive predicate that exactly characterises its
satisfiability. The decision procedure then extends from inductive
predicates to arbitrary separation logic formulas in our fragment in
a straightforward manner.

A complexity analysis of our decision procedure shows that it
runs, in the worst case, in exponential time. This is optimal since
we also show the satisfiability problem for our inductive predicates
to be EXPTIME-complete (by reduction from the succinct circuit
value problem). In addition, we show that when the arity of predi-
cates is bounded by a constant, the problem becomes NP-complete.

Finally, we provide an implementation of our decision proce-
dure, and analyse its performance on a range of formulas that are
either automatically generated or else encountered in the separation
logic literature. For the large majority of these test cases, our tool
reports times in the low milliseconds.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification, assertions; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems—Complexity of proof procedures

General Terms Algorithms, Theory, Verification

Keywords separation logic, inductive predicates, satisfiability, de-
cision procedure

1. Introduction
Separation logic [20, 23] is an established and fairly popular for-
malism for verifying imperative, heap-manipulating programs. At

∗Research supported by an EPSRC Career Acceleration Fellowship.
†Research supported by EPSRC “Resource Reasoning” grant
‡Research supported by EPSRC grant EP/H008373/1.

[Copyright notice will appear here once ’preprint’ option is removed.]

the time of writing, there is a number of automatic program veri-
fication tools based on separation logic, such as SLAYER [2] and
ABDUCTOR [8], capable of establishing memory safety properties
of code bases extending into millions of lines [25]. These verifi-
cation tools are highly dependent on the use of inductively defined
predicates to describe the shape of data structures held in mem-
ory, such as linked lists or trees. Currently, such predicates must be
hard-coded into these verification tools, which limits the range of
data structures that they can handle automatically. Thus, the next
step in automation is to handle general inductive predicates, which
might be provided to the analysis by the user, or even inferred au-
tomatically [6]. In this situation, however, it becomes much more
difficult to determine whether a given formula (containing arbitrary
inductive predicates) is consistent or not, which can lead to consid-
erable performance problems as time is spent on the analysis of
scenarios which are, in fact, unsatisfiable.

In this paper we address the latter problem by showing that the
satisfiability problem for the most commonly considered fragment
of separation logic, extended with general inductive predicates, is in
fact decidable. Our decision procedure rests upon the observation
that the satisfiability of each inductive predicate can be precisely
characterised by an approximation of its set of models, an object
which we refer to as the base of the predicate. Roughly speak-
ing, the base of a predicate records, for each possible satisfying
model, the subset of its arguments that are required to be allocated
in memory, as well as the equalities and disequalities that must
hold between its arguments. Since there are clearly only finitely
many possible such subsets and equality/disequality relations be-
tween predicate arguments, the base can be straightforwardly com-
puted in finite time. Furthermore, having computed the base of all
required predicates, our procedure is also able to effectively decide
the satisfiability of other formulas in the fragment in which these
predicates may occur.

We undertake a complexity analysis of our decision procedure
which shows that, in the worst case, it runs in exponential time
in the size of the underlying set of inductive definitions. This is,
essentially, because our inductive definition schema allows us to
construct sets of definitions that admit an exponential number of
base pairs. Indeed, we show that the satisfiability problem for our
inductive predicates is EXPTIME-complete. Additionally, if the
maximum number of arguments among all inductive predicates is
bounded, then the satisfiability problem becomes NP-complete.

We also provide an implementation of our decision procedure
that is capable of taking as input separation logic formulas and
inductive definition sets in the format employed by existing tools
such as CYCLIST [7]. We evaluate the performance of this algo-
rithm on a large number of inductive predicates automatically gen-
erated by the predicate inference tool in [6], and on a number of
other examples drawn from the literature on separation logic veri-

1 2013/7/12

fication. To evaluate the scalability of the approach, we also bench-
mark the implementation against synthetically generated examples
with varying parameters. Although it is possible to produce expo-
nential time performance by a suitable choice of parameters, we
find that for the vast majority of examples in our test suite, the algo-
rithm terminates in a matter of milliseconds. This suggests that our
decision procedure might have significant applications as a black-
box satisfiability tool in automated separation logic verification.

We remark that the problem of satisfiability for separation
logic with inductive definitions was recently considered by Iosif et
al. [16]. Their paper establishes decidability results for both satisfi-
ability and entailment problems via an embedding into monadic
second order logic, but is restricted to inductive predicates of
bounded treewidth which, for instance, disallows structures with
dangling data pointers. Compared to their work, while we do not
consider entailments between formulas, our decidability result for
satisfiability holds for a much larger class of inductive predicates;
in addition, we provide complexity results and an implementation
for our decision procedure.

The remainder of this paper is structured as follows. First, in
Section 2, we present an extended example illustrating how to com-
pute the base of an inductive predicate, which is the main idea un-
derlying our decision procedure for satisfiability. We formally in-
troduce our fragment of separation logic with inductive definitions
in Section 3, and then present our decision procedure and the proof
of its correctness in Section 4. Section 5 contains our analysis of
the complexity of our algorithm and of the complexity of the sat-
isfiability problem for inductive predicates. Section 6 describes the
implementation of our decision procedure and its evaluation. Sec-
tion 7 surveys related work in the area, and Section 8 concludes.

2. Illustration
Before venturing into the formal details of our development, in this
section we motivate the satisfiability problem under consideration,
as well as our method for solving it, with a simple example.

Consider the following four inductive rules defining two mutu-
ally recursive predicates P and Q:

x = nil⇒ P (x) (P1)
x 6= nil : Q(x, x)⇒ P (x) (P2)

y = nil : x 7→ (d, c) ∗ P (d)⇒ Q(x, y) (Q1)
y 7→ (d, c) ∗Q(x, c)⇒ Q(x, y) (Q2)

This set of rules, in fact, has been automatically inferred by the
program analysis tool in [6] as a tentative definition of the safety
precondition P (x) for a program that traverses a list of lists. The
body of each rule (on the left of⇒) has a pure part, containing only
equalities and disequalities, and a spatial part that symbolically
describes a heap. A points-to formula, e.g. x 7→ (d, c), denotes
a heap with exactly one memory cell, the address of which is x and
contains the data pair (d, c). A separating conjunction A ∗ B of
formulas is true on those heaps that can be partitioned into two
disjoint subheaps, one satisfying A and the other B. A missing
(empty) spatial part denotes the empty heap.

In each rule, variables occurring on the left- but not the right-
hand side are implicitly existentially quantified. Often, informally,
we say that variables on the right-hand side are “externally visible”,
while all others are not. These rules can be applied in a bottom-
up manner to determine variable and heap assignments that satisfy
each one of the predicates. We are interested, thus, in discovering
whether some of the rules, or in fact some of the predicates, are
unsatisfiable and may be safely discarded from the rule set.

From rule (P1), for example, we know that P (x) is satisfied
when x := nil and the heap does not contain any memory cells.
Similarly, following rule (Q1), Q(x, y) is satisfied when, for in-

stance, x := 3, y := nil and the heap consists of a single cell
allocated at address 3 with content (nil , 7). This follows since, un-
der this assignment, the pure part of the rule (y = nil) is true and,
letting the existentially quantified c := 7 and d := nil , we know
that x 7→ (d, c) is satisfied by the heap h := [3 7→ (nil , 7)], while
P (d) is satisfied by the empty heap. More generally, Q(x, y) is al-
ways satisfied when x is any (non-nil) location, y := nil and the
heap is h := [x 7→ (nil, c)] where c holds an arbitrary value. Armed
with this information, and following a similar line of reasoning, we
can recursively apply rule (Q2) to discover infinitely many new sat-
isfying assignments for Q(x, y), namely:

x := 3 y := 5 h := [5 7→ (1,nil), 3 7→ (nil , 7)]

x := 3 y := 4 h := [4 7→ (1, 5), 5 7→ (1,nil), 3 7→ (nil , 7)]
...

So far, we have not had a chance to satisfy the body of rule (P2),
since x 6= y in all models of Q(x, y) found so far. But how can we
prove, without computing the infinitely many models satisfying Q,
that no suitable assignment will be eventually found? For this we
introduce the concept of the base of an inductively defined predi-
cate. Intuitively, the base keeps track of: (1) the externally visible
variables that are necessarily allocated in any heap satisfying the
body of a rule and (2) the set of equalities and disequalities that
must be satisfied among these variables. Two key results show that
the base is indeed an useful device to answer questions about satis-
fiability of inductive predicate definitions:

1. The base computation eventually reaches a fix-point and termi-
nates after a finite number of steps.

2. The base of a predicate (resp. a rule) exactly characterises its
satisfiability. That is: a predicate (resp. a rule) is unsatisfiable if
and only if its base is empty.

Starting again on the same example, from rule (P1) we initially
discover that the pair (∅, x = nil) is in the base of P (x). That is,
nothing is necessarily allocated by the predicate, but the equality
x = nil must hold for it to be satisfied. From rule (Q1) we discover
that the pair ({x}, {y = nil, x 6= nil}) is in the base of Q(x, y).
That is, in models of this rule x must definitely be allocated, and
both y = nil, x 6= nil must hold. Similarly, from rule (Q2) we now
discover that

({x, y}, {x 6= y, y 6= nil, x 6= nil})

is also in the base of Q(x, y). The variable x must be allocated
because, so far, it is allocated in all base pairs of Q, while y is
explicitly allocated by the body of the rule. Also from the previous
base we inherit the fact that x 6= nil, while y 6= nil follows because
y is allocated and, similarly, x 6= y is deduced because both x
and y must be allocated on disjoint portions of the heap. Note that
facts about non-externally visible variables, such as the inherited
c = nil, are not recorded in the base. For the technical details of this
computation we refer the reader to Example 4.5 developed later.

Recursively applying rule (Q2) on the newly discovered base
pair, and after discarding facts about non-externally visibles, we
reproduce exactly the same base pair. So infinitely many satisfying
assignments forQ(x, y) have been condensed into a single element
in its base. Now it is also clear that Q(x, x) is unsatisfiable as, in
the only two available pairs in its base, the values of the first and
second argument must be distinct from each other.

3. Inductive definitions in separation logic
Here we present our fragment of inductive definitions in separation
logic, following the approach in [5].

2 2013/7/12

3.1 Syntax
A term is either a variable drawn from the infinite set Var, or
the constant symbol nil. We write Term for the set of all terms.
We also assume a fixed finite set P1, . . . , Pn of predicate sym-
bols, each with an associated arity. We often write vector notation
to abbreviate tuples; in particular, we abbreviate by P the tuple
(P1, . . . , Pn). We write πi(−) for the i-th projection function on
tuples, and sometimes abuse notation slightly by writing x ∈ x to
mean that x occurs in the tuple x.

Definition 3.1. Spatial formulas F and pure formulas G are given
by the following grammar:

F ::= emp | t 7→ t | Pit | F ∗ F
G ::= t = t | t 6= t

where t ranges over terms, Pi over the predicate symbols and t over
tuples of terms (matching the arity of Pi in Pit).

A symbolic heap is given by Π : F , where F is a spatial formula
and Π is a finite set of pure formulas. Whenever one of Π, F is
empty, we will omit the semicolon.

We write the substitution notation F [t/x] for the result of simul-
taneously replacing all occurrences of the variable x by the term t
in the formula F . Substitution extends to sets of formulas in the
obvious way.

Definition 3.2. An inductive rule set is a finite set of inductive
rules, each of the form Π : F ⇒ Pix, where Π : F is a symbolic
heap, Pi is a predicate symbol of arity ai, and x is a tuple of ai
distinct variables.

Our strict formatting of the heads of inductive rules, with vari-
able repetitions and occurrences of nil disallowed, is for tech-
nical convenience. It does not restrict expressivity since we can
achieve the same effect by placing equalities in the bodies of in-
ductive rules. For example, a rule of the form ⇒ P (x, x, nil)
is not allowed by our schema, but the equivalent inductive rule
x = y, z = nil⇒ P (x, y, z) is allowed.

3.2 Semantics
We use a typical RAM model employing heaps of records. We fix
an infinite set Val of values, of which an infinite subset Loc ⊂ Val
are locations, i.e., the addresses of heap cells. We also assume a
“nullary” value nil ∈ Val \ Loc which is not the address of any
heap cell. A stack is a function s : Var → Val; we extend stacks to
terms by setting s(nil) =def nil , and extend stacks pointwise to act
on tuples of terms. We write s[x 7→ v] for the stack defined as s
except that (s[x 7→ v])(x) = v.

A heap is a partial function h : Loc⇀fin (Val List) mapping
finitely many locations to tuples of values; we fix

dom(h) =def {` ∈ Loc | h(`) is defined}

and e to be the empty heap that is undefined everywhere. We
write ◦ to denote composition of heaps: if h1 and h2 are heaps,
then h1 ◦ h2 is the union of (partial functions) h1 and h2 when
dom(h1) ∩ dom(h2) = ∅, and undefined otherwise. We write
h[` 7→ v] for the heap defined as h except that (h[` 7→ v])(`) = v,
and just [` 7→ v] as a shorthand for e[` 7→ v]. We write Heap for
the set of all heaps. Finally, a model is a stack and heap pair.

Given an inductive rule set Φ, the relation s, h |=Φ F for
satisfaction of a pure or spatial formula F by the stack s and heap h

is defined as follows:
s, h |=Φ t1 = t2 ⇔ s(t1) = s(t2)
s, h |=Φ t1 6= t2 ⇔ s(t1) 6= s(t2)
s, h |=Φ emp ⇔ h = e
s, h |=Φ t 7→ t ⇔ dom(h) = {s(t)} and h(s(t)) = s(t)
s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

where the semantics JPiKΦ of the inductive predicate Pi under Φ is
defined below. We write s, h |=Φ Π : F , where Π : F is a symbolic
heap, to mean that s, h |=Φ F and s, h |=Φ G for all G ∈ Π. We
say that Π : F is satisfiable, for a fixed Φ, if there is some stack s
and heap h such that s, h |=Φ Π : F .

We remark that satisfaction of a pure formula Π does not depend
on either the heap or the inductive rules: we write s |= Π to mean
that s, h |=Φ Π for any heap h and inductive definition set Φ.
Furthermore, we note that Π determines an equivalence relation
among terms. In particular we write t 'Π t′ if the set Π∪{t 6= t′}
is unsatisfiable and 〈t〉Π to denote the equivalence class of t, i.e.,
the set of all terms t′ such that t 'Π t′. In a slight abuse of notation,
we also write 〈t〉Π to denote the union of the equivalence classes
of all terms t ∈ t.

The following definition gives the standard semantics of the in-
ductive predicate symbols P according to a fixed inductive def-
inition set Φ, i.e., as the least fixed point of an n-ary monotone
operator constructed from Φ:

Definition 3.3. For each predicate Pi with arity ai, 1 ≤ i ≤ n, we
define τi = Pow(Val ai × Heap) where Pow(−) is powerset.

Partition Φ into Φ1, . . . ,Φn, where Φi ⊆ Φ is the set of
inductive rules of the form Π : F ⇒ Pix. We let each Φi be
indexed by j (i.e., Φi,j is the j-th rule defining Pi), and for each
inductive rule Φi,j of the form Π : F ⇒ Pix, we define the
operator ϕi,j : τ1 × . . .× τn → τi by:

ϕi,j(X) =def {(s(x), h) | s, h |=X Π : F}

where |=X is the satisfaction relation defined above, except that
JPiKX =def Xi, where X = (X1, . . . , Xn). We then finally define
the tuple JPKΦ ∈ τ1 × . . .× τn by:

JPKΦ =def µX. (
⋃
j ϕ1,j(X), . . . ,

⋃
j ϕn,j(X))

We write JPiKΦ as an abbreviation for πi(JPKΦ).

Example 3.4. Consider again the rules from the example in Sec-
tion 2, where the rules in Φ are now partitioned as follows:

Φ1,1 : x = nil⇒ P (x)

Φ1,2 : x 6= nil : Q(x, x)⇒ P (x)

Φ2,1 : y = nil, x 6= nil : x 7→ (d, c) ∗ P (d)⇒ Q(x, y)

Φ2,2 : y 6= nil : y 7→ (d, c) ∗Q(x, c)⇒ Q(x, y).

Here τ1 = Pow(Val× Heap) and τ2 = Pow(Val× Val× Heap)
correspond, respectively, to all sets of potential models of the two
predicates P = {P,Q}. The function ϕi,j : τ1 × τ2 7→ τi maps
known models of P and Q to a set of new models deduced by the
rule Φi,j . Initially X0 = (∅, ∅), that is no known models.

After the first iteration ϕ1,1(X0) = {(nil , e)} contains the only
model of P generated by the rule Φ1,1, while ϕi,j(X0) = ∅ for
all three other rules. Thus X1 = ({(nil , e)}, ∅). On the second
iteration we now discover

ϕ2,1(X1) = {(x,nil , [x 7→ (nil , c)]) | x ∈ Loc and c ∈ Val} ,

all new models of Q; while ϕi,j(X1) = ϕi,j(X
0) remain for

all other three rules and thus X2 becomes ({(nil , e)}, ϕ2,1(X1)).

3 2013/7/12

Then, on the third iteration,

ϕ2,2(X2) = {(x, y, [y 7→ (d,nil), x 7→ (nil , c)]) |
x 6= y ∈ Loc and c, d ∈ Val} ,

while ϕi,j(X2) = ϕi,j(X
1) remain for all other three rules and

thus X3 = ({(nil , e)}, ϕ2,1(X1) ∪ ϕ2,2(X2)).
Further applications of the rule Φ2,2, via ϕ2,2, yield larger and

larger models for Q, ad infinitum.
The fixed point JPKΦ contains all possible models of P and

Q, each found after applying a finite but unbounded number of
derivations using rules in Φ.

4. A decision procedure for satisfiability of
inductive predicates

Throughout this section we assume, without loss of generality, that
sets of pure formulas are ordered as a list of equality formulas
t = t′ followed by a list of disequality formulas t 6= t′. We use
the following definition to restrict the variables occurring in a pure
formula to only those which are “externally visible”. For example,
given Π = {x = c, c 6= y, c 6= d} and the externally visible
variables x = (x, y), then the restricted Π � x is {x 6= y}.
Definition 4.1. Let Π be a finite set of pure formulas and let x be
a tuple of variables. We define the set of pure formulas Π � x by
induction on Π as follows, where comma is to be read as set union
in the obvious way:

∅ � x =def ∅

(t1 6= t2,Π) � x =def

{
t1 6= t2, (Π � x) if t1, t2 ∈ x ∪ {nil}
Π � x otherwise

(t1 = t2,Π) � x =def


t1 = t2, (Π � x) if t1, t2 ∈ x ∪ {nil}
Π[t1/t2] � x if t2 /∈ x ∪ {nil}
Π[t2/t1] � x otherwise

The following pair of lemmas formalise the notion that there is
a close connection between models of Π and those of Π � x. More
specifically, given a model s of Π it is possible to modify s, as
long as the values assigned to x are not changed, and still remain
a model of Π � x. Conversely, given a model s of Π � x, assuming
that Π was satisfiable to begin with, we can always tweak s without
changing values assigned to x and recover a model for Π.

Lemma 4.2. Let Π be a finite set of pure formulas. If s |= Π and
s(x) = s′(x) then s′ |= Π � x.

Proof. We proceed by induction on the size of the set Π. If Π is
empty, we are trivially done. Otherwise, we distinguish cases on
the first formula in Π.

Case Π = (t1 6= t2,Π
′). By assumption, we have s |= t1 6= t2

and s |= Π′. Thus, by induction hypothesis, s′ |= Π′ � x.
We first consider the subcase where t1, t2 ∈ x ∪ {nil}. Then,
since s′(x) = s(x), we easily have s′ |= t1 6= t2 and so
s′ |= t1 6= t2,Π

′ � x as required.
If one of t1, t2 6∈ x ∪ {nil}, then we just have to prove

s′ |= Π′ � x, which is immediate by the induction hypothesis.

Case Π = (t1 = t2,Π
′). By assumption, we have s |= t1 = t2

and s |= Π′. We first consider the subcase where t1, t2 ∈ x ∪ {nil}.
By the induction hypothesis, we have that s′ |= Π′ � x. Since
s′(x) = s(x), we have s′ |= t1 = t2. Thus s′ |= t1 = t2,Π � x as
required.

Next we consider the subcase where t2 6∈ x∪{nil} (the subcase
where t2 ∈ x ∪ {nil} and t1 6∈ x ∪ {nil} is similar). Since

s |= t1 = t2 and s |= Π′, we have s |= Π′[t1/t2]. Thus, by
induction hypothesis, we have s′ |= Π′[t1/t2] � x as required.

Lemma 4.3. Let Π be a finite set of pure formulas. If Π is satisfi-
able and s |= Π � x then there exists a stack s′ with s′(x) = s(x)
such that s′ |= Π.

Furthermore, for any finite set of locations W ⊆ Loc, and for
any variable y we can choose s′(y) such that if y /∈ 〈x〉Π then
s′(y) /∈W .

Proof. By induction on the size of the set Π, i.e. the number of pure
formulas it contains. If Π is empty we define

s′(y) =def

{
s(y) if y ∈ x

nil otherwise .

It is easy to verify that s′ satisfies the conditions of the lemma:
by construction s′(x) = s(x); also if y /∈ 〈x〉Π then necessarily
s′(y) = nil /∈ W , since nil is not a location. Otherwise, when Π
is not empty, we distinguish the following two cases.

Case Π = (t1 6= t2,Π
′). First we examine the subcase where

t1, t2 ∈ x ∪ {nil}. By assumption, we have s |= t1 6= t2 and
s |= (Π′ � x). Thus, by induction hypothesis, there is an s′ such
that s′(x) = s(x) and s′ |= Π′. Furthermore, as t1, t2 ∈ x∪ {nil}
by assumption and since s |= t1 6= t2, we have s′ |= t1 6= t2,
which gives us s′ |= t1 6= t2,Π

′ as required.
Now we examine the subcase where both t1, t2 6∈ x∪{nil} (the

subcase where only one of t1, t2 is not in x ∪ {nil} is similar). By
assumption, we have s |= Π′ � x. Thus by induction hypothesis,
there is a s′′ with s′′(x) = s(x) and s′′ |= Π′. Since t1, t2 6= nil,
both t1 and t2 are variables, and they cannot be the same variable,
otherwise Π is unsatisfiable, contradicting the lemma assumption.
Thus we define

s′ =def s
′′[t1 7→ `1, t2 7→ `2]

where `1, `2 ∈ Val \ (W ∪ s(x) ∪ {v | ∃x ∈ Π′. s′′(x) = v})
and `1, `2 distinct

Such `1 and `2 can always be found since Val is assumed to be
infinite, while the set of disallowed values is finite. Note that our
choice of `1, `2 ensures that s′(t1), s′(t2) 6∈ W so the second part
of the lemma is satisfied. Furthermore, we have s′ |= t1 6= t2.

It just remains to show that s′ |= Π′. This is not quite trivial
because, although we have s′′ |= Π′, it might be that either t1 or t2
occurs in Π′. However, because of our assumption about the format
of sets of pure formulas (all equalities come before disequalities),
Π′ must contain only disequality formulas. Thus we have only to
ensure that t1, t2 are not equal to any other term in Π under s′; but
this is precisely guaranteed by our choice of `1, `2 above.

Case Π = (t1 = t2,Π
′). First we examine the subcase where

t1, t2 ∈ x ∪ {nil}. By assumption, s |= t1 = t2 and s |= Π′ � x.
Thus, by induction hypothesis, there is an s′ such that s′ |= Π′ and
s′(x) = s(x). Since t1, t2 ∈ x ∪ {nil} and s |= t1 = t2, we have
s′ |= t1 = t2,Π as required.

Next we examine the subcase where t1 is in x ∪ {nil} but t2
is not. By assumption, s |= Π′[t1/t2] � x. Thus, by induction
hypothesis, there is a stack s′′ such that both s′′(x) = s(x) and
s′′ |= Π′[t1/t2]. As t2 is assumed to be a variable, the stack given
by s′ =def s

′′[t2 7→ s′′(t1)] is well defined and, by usual facts
about substitution, s′ |= Π′. Thus the first part of the lemma holds.
For the second part of the lemma, when y = t2, we note that then
either t1 ∈ x so that t2 ∈ 〈x〉Π and the condition does not apply,
or t1 = nil so that s′(t2) = nil /∈W .

The other subcases are similar, we just have to make sure to
choose s′ =def s

′′[t1 7→ s′′(t2)] to satisfy s′ |= Π′[t2/t1]. Also

4 2013/7/12

define baseΦP:
Y := (λt1. ∅, . . . , λtn. ∅)
repeat until Y reaches a fixed point:

pick a rule Φi,j ∈ Φ

for each Pj`(x`) in the body of Φi,j :
pick a base pair (V`,Π`) ∈ Yj`(x`)

take y1, . . . , yk from all y` 7→ u` in the body of Φi,j
take Π0 the pure part in the body of Φi,j
V := V1 ∪ · · · ∪ Vm ∪ {y1, . . . , yk}
Π :=

⊗
V ∪Π0 ∪Π1 ∪ · · · ∪Πm

if Π is satisfiable:
add

(
(〈V 〉Π ∩ x)[t/x], (Π � x)[t/x]

)
to Yi(t)

return Y

Figure 1. Pseudocode for the computation of baseΦP

we have that either both t1, t2 ∈ 〈x〉Π, and the second part of the
lemma does not apply, or both t1, t2 /∈ 〈x〉Π and in any case we
pick a value s′(t1) = s′(t2) /∈W . This completes the proof.

The following definition is central to the main contribution of
this paper. It constitutes the definition of the base operation which
is used to capture the satisfiability status of inductive rules and
predicates. The pseudocode in Figure 1 is provided as an informal
aid to navigate the steps of the computation, but formal and notation
details are only explained in the definition.

Definition 4.4. First, for each 1 ≤ i ≤ n we define

σi =def Term
ai → Pow(MPow(Var)× Pure)

where ai is the arity of the predicate symbol Pi, and MPow(X) is
the set of all multisets over X .

Next, for a multiset V of variables we define
⊗
V to be the set

containing:

• all formulas of the form x 6= x′ such that x and x′ are different
elements of V (note this means that if V contains duplicates
then

⊗
V is unsatisfiable),

• the formula x 6= nil for every element x of V .

We partition the inductive rule set Φ into Φ1, . . . ,Φn with
each Φi further indexed by j as in Definition 3.3. Without loss of
generality, we consider each inductive rule Φi,j ∈ Φ to be written
in the following form:

Π0 : y1 7→ u1 ∗ . . . ∗ yk 7→ uk ∗
Pj1(x1) ∗ . . . ∗ Pjm(xm)⇒ Pix (IndRule)

where Π0 is a set of pure formulas. We use the inductive rule Φi,j
to define an operator Ψi,j : σ1 × . . . × σn → σi as follows. If
Y = (Y1, . . . , Yn) where each Yi ∈ σi, and t is a tuple of ai
terms, then Ψi,j(Y) : σi, sends t to the set including all pairs:(

(〈V 〉Π ∩ x)[t/x], (Π � x)[t/x]
)

such that:

V = V1 ∪ · · · ∪ Vm ∪ {y1, . . . , yk},
Π =

⊗
V ∪Π0 ∪Π1 ∪ · · · ∪Πm,

∀1 ≤ ` ≤ m. (V`,Π`) ∈ Yj`(x`), and
Π satisfiable.

Note that the substitution [t/x] in the above is defined pointwise
over tuples; this is well defined since x is a tuple of distinct vari-

ables, as per Definition 3.2. The intersection 〈V 〉Π ∩ x denotes the
multiset of variables contained in V which, modulo the equivalence
relation induced by Π, also occur in x; that is all y ∈ V such that
y ≡Π x for some x ∈ x.

We then define baseΦP ∈ σ1 × . . .× σn as follows:

baseΦP =def µY. (
⋃
j Ψ1,j(Y), . . . ,

⋃
j Ψn,j(Y))

where by slight abuse notation
⋃
j Ψi,j(Y) denotes the function

that maps a tuple of terms t to the set
⋃
j Ψi,j(Y)(t). We also

write baseΦPi as an abbreviation for πi(baseΦP).

Example 4.5. As an example consider again the set of inductive
rules Φ from the previous Example 3.4. In this case each

Y1 ∈ σ1 = Term→ Pow(MPow(Var)× Pure)

Y2 ∈ σ2 = Term× Term→ Pow(MPow(Var)× Pure)

map a corresponding number of terms to respective sets of base
pairs for the predicates P and Q.

To compute baseΦP, initially we start with Y0 = (Y 0
1 , Y

0
2),

where Y 0
1 = λx. ∅ and Y 0

2 = λx, y. ∅. That is, initially the base
of both P and Q is empty.

On the first iteration, we want to compute Ψi,j(Y
0
1 , Y

0
2), where

both i and j range over {1, 2}. For the inductive rule Φ1,1, the
function Ψ1,1(Y 0

1 , Y
0
2) computes V = ∅ and Π = {x = nil}. The

set Π is clearly satisfiable and, since both V and Π remain the same
when restricting variables to the only visible {x}, we have

Ψ1,1(Y 0
1 , Y

0
2) = λx.

{
(∅, {x = nil})

}
.

Since Y0 does not contain any base pairs yet, all other rules map
their respective input terms to ∅. Thus we finally obtain the new
updated Y1 = (Y 1

1 , Y
1
2) where

Y 1
1 = λx.

{
(∅, {x = nil})

}
Y 1

2 = λx, y. ∅ .

That is, the base of P (x) now contains the pair (∅, {x = nil})
while the base of Q(x, y) remains empty.

On the second iteration, the rule Φ1,1 will generate (as always
in the future) the same pair, while both Φ1,2 and Φ2,2 remain
unsatisfiable because the base of Q contains no pairs. This time,
however, the inductive rule Φ2,1 becomes active, as there is now a
pair (∅, {d = nil}) ∈ Y 1

1 (d) produced by the current base of P .
We thus have

V = {x} Π = {y = nil, x 6= nil} ∪ {d = nil}

with satisfiable Π. After projecting to variables in {x, y}

Ψ2,1(Y 1
1 , Y

1
2) = λx, y.

{
({x}, {y = nil, x 6= nil})

}
,

and, at the end of the iteration, Y2 = (Y 2
1 , Y

2
2) where

Y 2
1 = λx.

{
(∅, {x = nil})

}
Y 2

2 = λx, y.
{

({x}, {y = nil, x 6= nil})
}
.

On the third iteration, the rule Φ1,2 becomes interesting, since
now ({x}, {x = nil, x 6= nil}) ∈ Y 2

2 (x, x) and, for this rule,

V = {x} Π = {x 6= nil} ∪ {x = nil, x 6= nil} .

The resulting Π, however, is not satisfiable and so no new base pair
is produced by this rule. The rule Φ2,1 produces the same base pair
as before, but the rule Φ2,2 has some new activity since now we
have the new pair ({x}, {c = nil, x 6= nil}) ∈ Y 2

2 (x, c). Thus

V = {x, y}
Π =

⊗
{x, y} ∪ {y 6= nil} ∪ {c = nil, x 6= nil}

= {c = nil, x 6= y, y 6= nil, x 6= nil}

5 2013/7/12

whose projection with respect to the set of variables {x, y} only
removes the equality c = nil ∈ Π. At the end of the iteration we
then have Y3 = (Y 3

1 , Y
3
2) where

Y 3
1 = λx.

{
(∅, {x = nil})

}
Y 3

2 = λx, y.
{

({x}, {y = nil, x 6= nil}),
({x, y}, {x 6= y, y 6= nil, x 6= nil})

}
.

On the fourth iteration both Φ1,1 and Φ2,1 produce the same
base pairs as before. For the rule Φ1,2 we now have a new pair
({x, x}, {x 6= x, x 6= nil, x 6= nil}) ∈ Y 3

2 (x, x) which, however,
one can quickly see that also generates an unsatisfiable set Π.
Similarly, for the rule Φ2,2 we also need to consider the new pair
({x, c}, {x 6= c, c 6= nil, x 6= nil}) ∈ Y 3

2 (x, c) which yields

V = {x, y, c}
Π =

⊗
{x, y, c} ∪ {y 6= nil} ∪ {x 6= c, c 6= nil, x 6= nil}

= {x 6= y, x 6= c, y 6= c, y 6= nil, c 6= nil, x 6= nil} .
Furthermore, the projections with respect to {x, y} yield

〈V 〉Π ∩ {x, y} = {x, y}
Π � x = {x 6= y, y 6= nil, x 6= nil} .

This produces exactly the same base pair as before, so no new pairs
are generated, Y4 = Y3 and a fixed point is reached:

baseΦP (x) =
{

(∅, {x = nil})
}

baseΦQ(x, y) =
{

({x}, {y = nil, x 6= nil}),
({x, y}, {x 6= y, y 6= nil, x 6= nil})

}
.

The following pair of lemmas formalise the stated intuition that
baseΦP (x), as defined, exactly characterises the satisfiability of
an inductively defined predicate P (x). The first of these lemmas,
stated in a slightly more general form, shows that if we are given a
stack s |= Π for a pair (V,Π) ∈ baseΦP (x) then it is possible to
find a heap h such that s, h |=Φ P (x) and, necessarily, all of the
values s(V) ⊆ domh are allocated in the heap. Here, and in the
following, we write s(V) where s is a stack and V a multiset of
variables to mean {s(v) ∈ Val | v ∈ V }.

Lemma 4.6. If (V,Π) ∈ (baseΦPi)(t), s |= Π, and W ⊆ Loc
satisfies s(V) ∩ W = ∅, then there exists a heap h such that
s, h |=Φ Pit and dom(h) ∩W = ∅.

Proof. We proceed by fixed point induction on the definition of
baseΦP.

We assume that the lemma already holds for a tuple of functions
Y = (Y1, . . . , Yn) ∈ σ1 × · · · × σn, and we must show that it
also holds for (

⋃
j Ψ1,j(Y), . . . ,

⋃
j Ψn,j(Y)). Thus, we assume

(V,Π) ∈ Ψi,j(Y)(t) with s |= Π and s(V) ∩W = ∅. Our task is
to find a heap h with s, h |= Pit and dom(h) ∩W = ∅.

By assumption, there is an inductive rule Φi,j of the form
(IndRule) above such that (V,Π) ∈ Ψi,j(Y)(t). Therefore we
have V = (〈V ′〉Π′ ∩ x)[t/x] and Π = (Π′ � x)[t/x], where the
following hold:

V ′ = V1 ∪ · · · ∪ Vm ∪ {y1, . . . , yk},
Π′ =

⊗
V ′ ∪Π0 ∪Π1 ∪ · · · ∪Πm,

∀1 ≤ ` ≤ m. (V`,Π`) ∈ Yj`(x`), and

Π′ satisfiable.

By the lemma assumption and usual substitution facts, we have
s[x 7→ s(t)] |= Π′ � x and s[x 7→ s(t)](〈V ′〉Π′ ∩ x) ∩W = ∅.
Since Π′ is satisfiable, we can apply Lemma 4.3 to obtain s′ with
s′(x) = s[x 7→ s(t)](x) = s(t) and s′ |= Π′. Furthermore, for
any variable y ∈ V ′, if y /∈ 〈x〉Π from the lemma application it

follows that y /∈ W . Alternatively, if y 'Π x for some x ∈ x,
then s′(y) = s′(x) = s[x 7→ s(t)](x) and since x ∈ 〈V ′〉Π′ ∩ x
but s[x 7→ s(t)](〈V ′〉Π′ ∩ x) ∩W = ∅, it must be the case that
s′(y) /∈W . Thus, in either case, we have s′(V ′) ∩W = ∅.

Now, we show that there exist heaps h1, . . . , hm such that for
all 1 ≤ ` ≤ m, we have s′, h` |=Φ Pj`x` and dom(h`)∩W` = ∅,
where W` is defined as follows:

W` =def W ∪ s′({y1, . . . , yk}) ∪
⋃
p<`

dom(hp) ∪
⋃

`<q≤m

s′(Vq)

We show inductively how to construct h` given the chain of heaps
(hp)1≤p<`.

Inductive construction of h1, . . . , hm. We state and prove the
claim that s′(V`)∩W` = ∅. We have shown that s′(V ′)∩W = ∅,
since V` ⊆ V , it follows that s′(V`) ∩W = ∅. Next, let p < ` and
note that by the induction hypothesis we have dom(hp)∩Wp = ∅,
which implies dom(hp) ∩ s′(V`) = ∅ by definition of Wp. Thus
s′(V`) ∩

⋃
p<` dom(hp) = ∅. Next, let q > ` and notice that

s′(V`)∩ s′(Vq) = ∅ because s′ |=
⊗
V ′, which guarantees that s′

is injective on V ′ ⊇ V`, Vq . Thus s′(V`) ∩
⋃
`<q≤m s

′(Vq) = ∅.
Finally, for a similar reason, s′(V`) ∩ s′({y1, . . . , yk}) = ∅.

Now since (V`,Π`) ∈ Yj`(x`), s′ |= Π`, and s′(V`)∩W` = ∅,
we can apply the main induction hypothesis of the lemma to obtain
a heap h` such that s′, h` |=Φ Pj`x` and dom(h`)∩W` = ∅. This
completes the construction.

Now we continue with the main proof. We note that h1◦ . . .◦hm
is defined because dom(h`) ∩ W` = ∅ for all 1 ≤ ` ≤ m
implies that dom(h1), . . . , dom(hm) are all disjoint from each
other. Now we define a heap h′ whose domain is s′({y1, . . . , yk})
by: h′(s′(yi)) =def s′(ui) for each 1 ≤ i ≤ k. Note that
h′ ◦ (h1 ◦ . . . ◦ hm) is defined because s′ |=

⊗
V ′ ensures that s′

is injective on {y1, . . . , yk} ⊆ V ′ and dom(h`)∩W` = ∅ ensures
that dom(h`)∩ dom(h′) = ∅ for each 1 ≤ ` ≤ m. Thus, defining
h =def h

′ ◦ h1 ◦ . . . ◦ hm, we obtain:

s′, h |=Φ ΠR : y1 7→ u1 ∗ . . . ∗ yk 7→ uk ∗ Pj1x1 ∗ . . . ∗ Pjmxm

which implies that s′, h |=Φ Pix. Thus, since s′(x) = s(t), we
obtain s, h |=Φ Pit as required by applying the operator ϕi,j .

Furthermore, we have dom(h) ∩W = ∅ as required because
dom(h`) ∩W ⊆ dom(h`) ∩W` = ∅ for each 1 ≤ ` ≤ m, and
dom(h′) = s′({y1, . . . , yk}) ⊆ s′(V ′) while s′(V ′) ∩W = ∅.
This completes the proof.

The following lemma proves the inverse direction of the former.
Here, we show that if the inductive predicate P (x) is satisfiable,
then there must be a satisfiable witness base pair in baseΦP (x).

Lemma 4.7. If s, h |=Φ Pit then there is (V,Π) ∈ (baseΦPi)(t)
such that s(V) ⊆ dom(h) and s |= Π.

Proof. We have (s(t), h) ∈ JPiKΦ, and apply fixed point induc-
tion on the definition of JPKΦ. That is, we assume the lemma
holds for X = (X1, . . . , Xn) ∈ τ1 × . . . × τn and must show
that it holds for (

⋃
j ϕ1,j(X), . . . ,

⋃
j ϕn,j(X)). Thus, we assume

(s(t), h) ∈ ϕi,j(X) and must find a pair (V,Π) ∈ (baseΦPi)(t)
such that s(V) ⊆ dom(h) and s |= Π.

By assumption, there is an inductive rule Φi,j of the form
(IndRule) such that (s(t), h) ∈ ϕi,j(X). By construction this
means that s(t) = s′(x) for some stack s′, and we have

s′, h |=X ΠR : y1 7→ u1 ∗ . . . ∗ yk 7→ uk ∗ Pj1x1 ∗ . . . Pjmxm

Thus s′ |= ΠR and h = h1 ◦ . . . ◦ hk ◦ h′1 ◦ . . . ◦ h′m, where
s′, h` |=Φ y` 7→ u` for all 1 ≤ ` ≤ k, and (s′(x`), h

′
`) ∈ Xj` for

all 1 ≤ ` ≤ m. By the induction hypothesis, we thus have for all

6 2013/7/12

1 ≤ ` ≤ m that there are pairs (V`,Π`) ∈ (baseΦPj`)(x`), such
that s′(V`) ⊆ dom(h′`) and s′ |= Π`. Now we define

V =def
⋃

1≤`≤m V` ∪ {y1, . . . , yk}

As dom(h1), . . . , dom(hk), dom(h′1), . . . , dom(h′m) are all dis-
joint, where dom(h`) = {s′(y`)} for each 1 ≤ ` ≤ k and
dom(h′`) ⊇ s′(V`) for each 1 ≤ ` ≤ m, we have s′ |=

⊗
V

(i.e., h would be undefined if s′ were not injective on V). Putting
everything together, we have

s′ |= ΠR ∪
⊗
V ∪ {Π1, . . . ,Πm} and s′(V) ⊆ dom(h)

Thus Π = ΠR ∪
⊗
V ∪ {Π1, . . . ,Πm} is satisfiable, and so(

(V ∩ x)[t/x], (Π � x)[t/x]
)
∈ (baseΦPi)(t)

where the substitution [t/x] is well defined as x is a tuple of distinct
variables. Since s′(x) = s(t), also s′(x) = s[x 7→ s(t)](x). By
Lemma 4.2, this gives us

s[x 7→ s(t)] |= Π � x and s[x 7→ s(t)](V ∩ x) ⊆ dom(h)

Thus, using the usual facts about substitution, we obtain

s |= (Π � x)[t/x] and s(V ∩ x)[t/x] ⊆ dom(h)

Thus there exists (V,Π) ∈ (baseΦPi)(t) such that s |= Π and
s(V) ⊆ dom(h) as required.

Putting all of the ingredients together, the following pair of
theorems establish the correctness and termination of the approach,
both for individual inductive predicates and for separation logic
formulas containing those predicates. The focus of the next section
is to determine exact bounds for the complexity of the approach.

Theorem 4.8. A formula of the form Pit is satisfiable if and
only if there exists a pair (V,Π) ∈ (baseΦPi)(t) such that Π is
satisfiable. Furthermore, for any given rule set Φ, the fixed point
computation baseΦP terminates after a finite number of steps.

Proof. The “if” direction follows immediately from Lemma 4.6 by
taking W = ∅. The “only if” direction follows immediately from
Lemma 4.7.

For termination, each predicate Pi has a finite arity ai and, since
each of the pairs (V,Π) ∈ baseΦPi(t) may only use terms from
the finitely many available in t, the final total number of pairs in
baseΦPi(t) is bounded by a finite constant. All of the functions
in the tuple baseΦP, mapping terms to base pairs, are thus finitely
described in a straightforward way.

Corollary 4.9. Satisfiability checking of symbolic heaps of the
form Π : F , with respect to a collection of inductive predicates
defined by a rule set Φ, is a decidable problem.

Proof. Consider the rule set Ψ = Φ ∪ {Π : F ⇒ Q} where Q is
a new 0-ary predicate not already defined in Φ. From the previous
theorem it follows that the symbolic heap Π : F is satisfiable if and
only if baseΨQ() is not empty.

5. Complexity
In the previous section we showed that our satisfiability checking
algorithm terminates and, thus, it constitutes a decision procedure.
Now this section investigates, in further depth, its theoretical com-
plexity. We define the decision problem PREDSAT as having ins-
tances of the form (Φ, P) where Φ is a set of rules and P a predi-
cate defined in Φ. A yes-instance of PREDSAT is one where there
exists a model s, h such that s, h |=Φ P (x). We also introduce
k-PREDSAT, a restricted form of PREDSAT where all predicates
defined in Φ have arity bounded by the constant k. We use ‖o‖ to

denote the length of the encoding of an object o under some reason-
able encoding scheme. Clearly, O(‖(Φ, P)‖) = O(‖Φ‖). Finally
we denote by B the set {>,⊥}.

For a set of rules Φ let α be the maximum arity of any predi-
cate in Φ plus one; clearly, α has order O(‖Φ‖). Thus, the length
of a base pair is bounded by α+ 2α2 of order O(‖Φ‖2) (size of
the variable set plus the size of the longest pure formula). Conse-
quently, the number of distinct base pairs for any given predicate in
Φ is bounded by N =def 2α+2α2

. Finally we use L to denote the
maximum length of any rule; as such, L is of order O(‖Φ‖).

Lemma 5.1. Let Φi,j be a rule in the form of (IndRule) and a tuple
T = 〈B1, . . . , Bm〉 of base pairs. Computing whether a base pair
B′ can be generated from T and Φi,j via Definition 4.4 takes time
polynomial in ‖Φi,j‖ and ‖T‖.

Proof. Immediate from Definition 4.4 and the fact that satisfiability
of pure formulas is decidable in polynomial time (see, e.g., [1]).

Lemma 5.2. k-PREDSAT is in NP.

Proof. Suppose (Φ, P) is the input instance. We define a non-
deterministic algorithm as follows. For each predicate Pi in Φ we
guess a set of up to N entries each comprising:

〈B, j,
−→
B1, . . . ,

−→
Bm〉

whereB is a base pair and j is an integer such that rule Φi,j (below)
defines Pi.

Π ∗ y1 7→ u1 ∗ . . . ∗ yk 7→ uk ∗Pj1(x1) ∗ . . . ∗Pjm(xm)⇒ Pix

In addition,
−→
B` is a pointer to a base pair for predicate Pj` . Each en-

try requires O(‖Φ‖2 + log |Φ|+ L logN) = O(‖Φ‖3) time and
space. Constructing all entries takesO(|Φ|N‖Φ‖3) = O(N‖Φ‖4)
time and space.

We will now show that this set of sets of entries represents a
possible state in the execution of the algorithm in Definition 4.4.
To do this we need to ensure two things. Firstly, it must be possible
to generate each base pair according to the information contained in
its corresponding entry (this is clearly possible in polynomial time
by Lemma 5.1). Secondly, that each such base pair is ultimately
derivable from base cases, i.e., rules with no predicate occurrences.
It is simple to show that if this is possible then the algorithm must
generate all these base pairs at some point in its execution. To
ensure this, we need only show that all maximal paths starting at a
base pair and formed by following the pointers

−→
B`, are acyclic. This

guarantees that they terminate in sink base pairs, i.e., ones where
the generating rule involves no other base pairs (m = 0, above).
This can be checked using standard graph-search algorithms in
polynomial time in the size of the graph, i.e., in N |Φ|. Finally, to
show that a predicate in Φ is satisfiable, it suffices to have a base
pair for that predicate, which can be trivially checked.

If certifying a pair takes time O((N‖Φ‖)c) for some con-
stant c, then certifying all pairs takes O(|Φ|N(N‖Φ‖)c) =
O((N‖Φ‖)c+1) time. Consequently, the total time for guessing
and certifying will be O((N‖Φ‖)c+1) without loss of generality.

If the arity of any predicate in Φ is bounded by a constant then
N also becomes a constant, and thus we can decide consistency in
non-deterministic O(‖Φ‖c+1) time.

Lemma 5.3. PREDSAT is in EXPTIME.

Proof. Each step of the algorithm scans all rules in Φ and for each
one looks for a combination of base pairs that yields a new base
pair. Thus it may have to go through NL combinations of base
pairs. In the worst case all rules have to be scanned, in up to |Φ|NL

7 2013/7/12

time. If no new base pair can be generated for any rule then the
algorithm has reached a fixed point.

As argued above, there can be at most |Φ|N distinct base pairs.
In the worst case exactly one pair is generated in each step. Thus
|Φ|N steps are required with total time |Φ|N |Φ|NLp(‖Φ‖) =
O(2poly(‖Φ‖)) where p(‖Φ‖) is the time taken to check a single
combination of base pairs according to Lemma 5.1.

Our lower bound results use standard facts about boolean cir-
cuits, with and without inputs. We will make a few common, sim-
plifying assumptions: (a) inputs and constants are gates with no
inputs and one output; (b) every circuit includes exactly two con-
stants, > and ⊥, even if it uses none; (c) there is one more kind
of gate, that representing the NAND connective (denoted by ↑);
(d) gates are numbered sequentially, so that if gate i has inputs l, r,
then i > l and i > r; (e) inputs precede>which precedes⊥which
precedes NAND gates in this order; (d) the output of the maximal
gate is the output of the circuit. We begin by defining a mapping
from circuits to sets of inductive rules, which will provide the basis
for NP-hardness.

Definition 5.4. Let C be a boolean circuit with n gates and k
inputs. Thus, the constant gates are k + 1 and k + 2 (> and ⊥
respectively). Define the set of rules ΦC as follows:

Ψ =def



x 6= nil⇒ T (x)

x = nil⇒ F (x)

F (x) ∗ T (z)⇒ N (x, y, z)

F (y) ∗ T (z)⇒ N (x, y, z)

T (x) ∗ T (y) ∗ F (z)⇒ N (x, y, z)



ΦC =def



T (xk+1) ∗ F (xk+2) ∗
∗ni=k+3 N(xli , xri , xi)⇒ P (xn)

P (xn) ∗ T (xn)⇒ Q>

P (xn) ∗ F (xn)⇒ Q⊥


∪Ψ

In the definition of ΦC , xli (resp. xri) denote the left (right) input
of gate i, where i > k + 2. Clearly, ‖ΦC‖ = O(‖C‖) and the
maximum predicate arity is 3.

We will often have to go from boolean tuples to stacks and back.
The following definition provides appropriate mappings.

Definition 5.5. Fix some τ ∈ Val such that τ 6= nil . Let b ∈ B,
B ∈ Bn and x ∈ Varn. Define functions sval : B → Val,
bval : Val→ B, stack sxB and boolean n-tuple Bs

x as

sval(b) =def

{
τ if b = >
nil if b = ⊥

sxB(xi) =def sval(Bi) for i = 1, . . . , n

bval(v) =def

{
> if v 6= nil

⊥ if v = nil

(Bs
x)i =def bval(s(xi)) for i = 1, . . . , n

Now we can state the first hardness result of this section.

Theorem 5.6. k-PREDSAT is NP-complete for k ≥ 3.

Proof. Membership in NP follows from Lemma 5.2. Hardness
will follow by reducing from CIRCUITSAT via Definition 5.4.
Formally, we show that there exists a boolean k-tuple B such that
C(B) = > if and only if (ΦC , Q>) ∈ k-PREDSAT. This will be

achieved by showing that for any b there exists appropriate B such
that C(B) = b if and only if (ΦC , Qb) ∈ k-PREDSAT.

Left-to-right: suppose there exists B such that C(B) = b.
Extend the tuple B to the n-tuple B′ such that for all i = 1, . . . , n,
B′i is equal to the output of gate i. B′ is clearly well defined.
Let ŝ =def sxB′ . It is easy to see that if b = > = B′n then
ŝ |=Ψ T (xn) and that if b = ⊥ then ŝ |=Ψ F (xn). Thus in order
to show that ŝ |=ΦC Qb it remains to show that ŝ |=ΦC P (xn).
If n ≤ k + 2 then this is immediate as the output of C is either
a constant or an input. If n is a NAND gate then we must show
that for every i = k + 3, . . . , n, B′li ↑ B′ri = B′i implies
ŝ |=ΦC N (xli , xri , xi), where li, ri are the inputs of gate i. This
follows from the definitions of predicate N and stack ŝ.

Right-to-left: suppose there is a stack s such that s |=ΦC Qb.
We assume without loss of generality that s |=ΦC P (xn) also.
Let B̂ =def Bs

x. Set B as the k-prefix of B̂. We use induction to
prove that for every i = 1, . . . , n, if the inputs are set to B then
the output of gate i is B̂i. The case where i = 1, . . . , k + 2 is
trivial. If i = k + 3, . . . , n then it is a NAND gate and has two
inputs li, ri < i for which we know that their values are equal to
B̂li , B̂ri respectively. It is then a simple matter of verifying that if
s |=Ψ N (xli , xri , xi) then it follows that B̂li ↑ B̂ri = B̂i, by the
definitions of N and B̂.

If b = > then by assumption s |=ΦC P (xn) ∗ T (xn), thus
B̂n = > and therefore C(B) = >. The other case where b = ⊥ is
similar.

For EXPTIME hardness we will encode natural numbers as
boolean tuples as well as formulas. The following definition for-
malises how we will do this.

Definition 5.7. We use iB to denote the boolean n-tuple encoding
an integer i = 1, . . . , 2n as a binary number on B. Note that, for
notational convenience we set 1B = ⊥n and (2n)B = >n. In
addition, we use a formula encoding in terms of the predicates T
and F as seen above. Formally,

frmb(x) =def

{
T (x) if b = >
F (x) if b = ⊥

boolB(x) =def frmB1(x1) ∗ . . . ∗ frmBn(xn)

numi(x) =def bool(iB)(x)

The circuit value problem (CVP) has as instances circuits with-
out inputs. A circuit C is a yes-instance of CVP if and only if
C() = >. The succinct circuit value problem (SCVP) has as in-
stances input-free circuits that are generated by a pair of circuits
in a way that is explained below. Again, an instance of SCVP is a
yes-instance if and only if for the generated circuit C it is the case
that C() = >.

Formally, an instance SC = (L,R) of SCVP consists of two
circuits, each of n+n inputs. In the represented circuitC, for every
i, j = 1, . . . , 2n if L(iB, jB) = > (resp. R(iB, jB) = >) then
i > j, i is a NAND gate and its left (right) input is j. For simplicity
we assume that circuits always use 2n gates and that their output is
that of gate 2n.

Definition 5.8. LetC be a k-input circuit and n gates. Then, define
ΦiC as follows, where Ψ is as in Definition 5.4.

ΦrC =def Ψ ∪

T (xk+1) ∗ F (xk+2) ∗ T (xn)∗

∗ni=k+3 N(xli , xri , xi)⇒ P (x1, . . . , xk)


This definition turns the circuitC into a relation P over the vari-

ables representing the inputs of C. This will simplify presentation

8 2013/7/12

when we are only interested for inputs that make the output equal
to >. In particular, we have the following lemma.

Lemma 5.9. For any circuit C on k-inputs and any B ∈ Bk,
C(B) = > if and only if ∃s |=Φr

C
P (x) ∗ boolB(x).

Proof. Analogous to the proof of Theorem 5.6.

Lemma 5.10. For any k-input circuit C and stacks s, s′, if it
is the case that Bs

x = Bs′
x then s |=Φr

C
P (x) if and only if

s′ |=Φr
C
P (x).

Proof. Observe that Bs
x = Bs′

x entails that for any variable xi,
s(xi) = nil if and only if s′(xi) = nil . The result then follows
by verifying that the satisfaction of predicates T, F,N by a stack s
depends only on whether their arguments evaluate to nil or not in
the stack s.

We can now define a mapping from succinctly represented cir-
cuits to sets of inductive rules.

Definition 5.11. Let SC = (L,R) be an instance of SCVP. Let
ΦiL,Φ

i
R be as in Definition 5.8 (we assume names PL, PR for the

corresponding P predicate). Define rules U1, U2, U3 as follows.

num1(x) ∗ T (v)⇒ U(x, v) (U1)
num2(x) ∗ F (v)⇒ U(x, v) (U2)

PL(x, l) ∗ PR(x, r) ∗
U(l, w) ∗ U(r, z) ∗N(w, z, v)

⇒ U(x, v) (U3)

Then define the following sets of rules.

X =def {U1,U2,U3} ∪ ΦiL ∪ ΦiR

ΦSC =def


U(x, v) ∗ T (v)⇒ Q>(x)

U(x, v) ∗ F (v)⇒ Q⊥(x)

num2n(x) ∗Q>(x)⇒ R

 ∪X
Thus SC is mapped to the PREDSAT instance (ΦSC , R).

Using Definition 5.11, we can state our EXPTIME-hardness
result.

Theorem 5.12. PREDSAT is EXPTIME-complete.

Proof. Membership follows from Lemma 5.3. Hardness follows by
reducing from SCVP (which is EXPTIME-complete [21]) through
Definition 5.11. This follows from the stronger fact that for all gates
i = 1, . . . , 2n and for any boolean b, the output of gate i is b if and
only if there is stack s such that s |=ΦSC

numi(x) ∗ Qb(x). We
use induction on i.

Left-to-right: Let i = 1. Gate 1 is the constant> by assumption
thus its output is also b = >. Let B =def i

B. Define ŝ as

ŝ =def s
x
B[v 7→ sval(>)].

Clearly as ŝ |=X U(x, v) through (U1) and ŝ |=ΦSC
T (v) by

construction, it must be that ŝ |=ΦSC
numi(x) ∗Q>(x). The case

where i = 2 is similar.
Let i > 2 and suppose the output of gate i is b. That gate must

be a NAND gate thus there exist l, r < i such that L(iB, lB) = >,
R(iB, rB) = >, the values of gates l, r are c, d and c ↑ d = b.
By the inductive hypothesis we obtain two stacks sl, sr such that
sl |=ΦSC

numl(l) ∗ Qc(l) and sr |=ΦSC
numr(r) ∗ Qd(r). In

particular, regardless of which values c, d have, sl |=ΦSC
U(l, w)

and sr |=ΦSC
U(r, z) (we set sl(w) = sl(v) and sr(z) = sr(v)

without loss of generality). By Lemma 5.9, we also conclude that
there are stacks s′l, s

′
r such that s′l |=Φr

L
PL(x, l) ∗ numi(x) ∗

numl(l) and s′r |=Φr
R
PR(x, r) ∗ numi(x) ∗ numr(r), where

Lemma 5.10 allows us to assume s′l(x) = s′r(x), s′l(l) = sl(l)
and s′r(r) = sr(r). Thus there exists ŝ such that ŝ(w) = sl(w),
ŝ(z) = sr(z) and

ŝ |=ΦSC
PL(x, l) ∗ PR(x, r) ∗ U(l, w) ∗ U(r, z) ∗N(w, z, v)

and by (U3), ŝ |= U(x, v). A case analysis on the definition of N
allows us to conclude that ŝ |=ΦSC

numi(x) ∗Qb(x).
Right-to-left: Suppose now that there is a stack s such that

s |=ΦSC
numi(x) ∗ Qb(x). Thus s |=ΦSC

U(x, v). If i = 1
or i = 2 then gate i is a constant and the result follows trivially
from rules (U1) or (U2).

Let i > 2. Then, gate i is a NAND gate, thus rule (U3) applies:

s |=ΦSC
PL(x, l) ∗ PR(x, r) ∗ U(l, w) ∗ U(r, z) ∗N(w, z, v).

Let l, r = 1, . . . , 2n be the unique integeres such that lB = Bs
l and

rB = Bs
r. By Lemma 5.9 we can conclude that L(iB, lB) = > and

R(iB, rB) = >, meaning that l, r are the inputs of gate i. As such,
there exist booleans c, d such that s |=ΦSC

Qc(l) ∗ Qd(r) and by
the inductive hypothesis we obtain that the outputs of gates l, r are
c, d respectively. It remains to show that c ↑ d = b which follows
by a case analysis on the definition of N .

Exponential run-time can be exhibited easily through counting.

Proposition 5.13. There exists a family of predicates Φn of size
O(n) such that the algorithm runs in Ω(2n) time and space.

Proof. It should be clear from the above results that it is possible
to render circuits as predicates in linear space. In particular, the
successor relation over two n-bit numbers is trivial to encode as a
predicate succ(x,y), where x,y are two n-variable tuples. Con-
sider then the following set of predicates Φn.

num1(y)⇒ Q(y)

succ(x,y) ∗Q(x)⇒ Q(y)

num(2n)(x) ∗Q(x)⇒ P

The set Φn has size linear in n, including all auxiliary predicates
such as succ.

Given Φn, the algorithm will start with the base case for Q and
effectively count up to 2n − 1, creating a base pair encoding each
number in between. Note that this will happen irrespective of which
strategy is used to select predicates or base pairs for instantiation.
Clearly, the algorithm will take Ω(2n) time and space before it finds
a fixed point.

It is notable that Definitions 5.4 and 5.11 describe predicates
that are pure, in that no points-to subformulas (x 7→ t) are used.
This fact affirms the intuition obtained from the algorithm, i.e.,
that heap allocation can be treated effectively (with respect to
consistency) through computations on pure formulas, and thus that
it does not add to the complexity of the pure problem.

6. Implementation and experiments
We implemented the decision procedure for satisfiability of induc-
tive definitions in separation logic in CYCLIST [7], an open-source
framework for constructing cyclic theorem provers with support for
logics with inductive predicates. Our implementation is a straight-
forward rendition of Definition 4.4 in about 1000 lines of OCaml
code. In the rest of this section we detail our efforts to evaluate the
performance of the algorithm in various contexts.

6.1 Benchmarks on automatically abduced predicates
The first of our experiments concerns the abduction of inductive
definitions in separation logic. The CABER tool described in [6]

9 2013/7/12

(a) Solved in

V ars ≤ 1 s ≤ 30 s Sat.

20 94 99 9
30 88 96 17
40 86 95 20
50 89 98 37
60 91 97 28
70 85 97 46
80 89 97 41

(b) Solved in

Rules ≤ 1 s ≤ 30 s Sat.

2×2 100 100 34
3×2 100 100 19
2×3 91 98 32
3×3 89 98 37
4×3 86 96 31
3×4 57 81 24
4×4 47 75 23

(c) Solved in

Arity ≤ 1 s ≤ 30 s Sat.

1 99 100 22
2 96 100 24
3 89 98 37
4 80 90 30
5 72 80 24

(d) Solved in

Recs ≤ 1 s ≤ 30 s Sat.

0 100 100 21
1 100 100 42
2 89 98 37
3 88 96 13
4 85 93 9

Table 1. Each row reports the number of test cases, out of 100
randomly generated instances for each parameter combination, that
were solved by our tool.

takes a program as input and attempts to invent an inductively de-
fined precondition such that the program, when started from a state
that satisfies this precondition, is guaranteed to run without faulting
(i.e., it is memory-safe). It returns as output a set of inductive rules,
but does not guarantee that the defined predicates are satisfiable. Of
course, ensuring that the abduced precondition is indeed satisfiable
is important because an unsatisfiable precondition, though practi-
cally useless, nevertheless trivially satisfies the requirements of ab-
duction: any program is memory-safe under this precondition for
the simple reason that no program state satisfies the precondition.

We modified this abductive prover so that whenever it finds a
candidate set of inductive definitions, it records it as a test case and
then fails the search, triggering back-tracking and, thus, continuing
to generate candidate definitions. Twenty-nine test programs were
used, producing 45 945 syntactically unique inductive rule sets. The
number of predicates ranged between one and 37, with the majority
(94%) having 20 predicates, and with sets with 19 predicates being
the most numerous (15%). Predicates had up to 11 parameters
and up to two recursive invocations. Most sets were satisfiable
(83%) and no test took more than 50 ms. We conjecture that the
strong performance of our algorithm in these tests results from the
relatively simple recursive structure that the predicates produced by
the prover have.

6.2 Benchmarks on predicates from the literature
We have collected standard predicates for e.g. singly- or doubly-
linked list segments, (possibly circular) lists, tree segments and
trees from the literature. This collection consists of in total 17 pred-
icates defined by 36 rules. With a runtime of 4 ms to prove satisfi-
ability of this set of definitions, also here our decision procedure
performs extremely well. This is rather expected, since all predi-
cates in this test set are quite easily seen to be satisfiable.

6.3 Synthetic benchmarks
To experimentally evaluate the scalability of our procedure, we de-
signed a random distribution from which to draw hard synthetically
generated test cases. The distribution is determined by the follow-
ing parameters:

• Vars — number of variables in Var,

• Rules = Preds ×Cases — number of predicates and number
of inductive rules for each predicate,
• Arity — arity, the same for all predicates,
• Eqs , Neqs , Points , and Recs — respectively, the average num-

ber of equalities, disequalities, points-to literals, and recursive
predicate calls on each rule.

For each instance, a total of Rules = Preds × Cases inductive
definitions are independently generated, where all predicates have
the same Arity . On each rule body, the exact number of literals of
each of the four available kinds is drawn from a Poisson distribution
where the parameter λ is set to, respectively, Eqs , Neqs , Points ,
or Recs . This produces a mix of short and long rule bodies with a
specified average length. Furthermore, to produce on average one
base case for the rule system, with probability p = 1/Rules all the
recursive calls in the body of a rule are discarded.

The terms occurring on each literal are randomly drawn from a
set containing nil and the specified number of variables Vars . To
avoid trivially unsatisfiable rule bodies, the two terms in an equality
or disequality are required to be distinct, while all terms allocated
by points-to literals are required to be non-nil and distinct from
each other. Moreover, when randomly choosing a term, with proba-
bility p = 1/(Points+Recurs) the choice is limited to arguments
in the head of the rule. This has the effect, roughly, of making sure
that on average one of the arguments of the predicate being defined
is allocated—either directly or indirectly by recursion—in the body
of the rule.

Table 1 reports statistics gathered when solving instances drawn
from the above described distribution. Each row collects the results
from 100 instances randomly generated with different parameter
values. The two middle columns report, for each parameter combi-
nation, the number of test cases that were solved in, respectively,
not more than 1 second and not more than half a minute; while
the last column reports the total number of satisfiable instances, i.e.
when all predicates in the rule set are satisfiable, that were found
before the half a minute timeout.

Although most cases are fairly easy to solve, a few hard in-
stances consistently show up on all parameter settings. For exam-
ple, the tool takes one second per instance or less to decide 89
of the 100 test cases generated with Vars = 50, Rules = 3×3,
Arity = 3, and all Eqs , Neqs , Points , and Recs set to 2 (that is
the bold line repeated on all four tables). Given half a minute per in-
stance 9 more test cases can be solved, while 2 very hard instances
remain unsolved after this hard timeout. Each of the four tables
show, respectively, how these statistics change as one of the param-
eters changes while all the others remain fixed. As expected, more
variables result in more satisfiable instances (a), and systems with
more rules (b) or predicates with higher arity (c) are more difficult
to solve. Rules with more recursive predicate calls (d) also have a
slight increase in difficulty but not as much, this can explained by
the quick drop on satisfiable instances found: if the number of vari-
ables remains fixed, adding more predicates to the body of a rule
will tend to make it unsatisfiable and thus easier to decide.

6.4 Exponential-time benchmarks
We also report on a special class of hand-crafted synthetic bench-
marks, namely the family Φn of predicates of size O(n) given in
Proposition 5.13 to show that the algorithm can have runtime ex-
ponential in n. Here we used a binary adder-based implementation
for the successor relation. Table 2 reports on the corresponding run-
times. As expected, the runtime indeed deteriorates dramatically
with growing values for n in this artificial family of recursive spec-
ifications.

10 2013/7/12

n Runtime

1 < 0.01 s
2 0.05 s
3 0.07 s
4 0.84 s
5 28.94 s
6 15 m 49.25 s
7 > 40 m

Table 2. Runtimes of our tool on the predicate family Φn from
Proposition 5.13

7. Related work
We identify three main categories of related work: (i) work on satis-
fiability for fragments of separation logic; (ii) work on satisfiability
for other logical settings featuring inductive definitions; and finally
(iii) automated verification tools for separation logic with support
for general inductive predicates, which might benefit from our sat-
isfiability decision procedure.

7.1 Satisfiability in separation logic with inductive predicates
Some interesting progress has been made recently on satisfiability
checking for certain fragments of separation logic with user-defined
inductive predicates. In [16], Iosif et al. consider a restriction of
our fragment of separation logic (see Definition 3.1) which only
allows structures with bounded treewidth. They prove decidability
for satisfiability and entailment of inductive definitions in this frag-
ment via a reduction to monadic second-order logic over graphs.
However, the restriction to structures of bounded treewidth rules
out many natural inductive predicates; in particular, structures with
dangling data pointers, such as list or tree segments with extra arbi-
trary data fields. In the present paper, we only consider satisfiabil-
ity, not entailment, but we are not restricted to bounded-treewidth
predicates. In addition, we provide a direct decision procedure for
satisfiability (as opposed to a reduction proof of decidability) and
contribute an analysis of the complexity of satisfiability checking
for our fragment.

Considerable research effort has also been expended on the
fragment of separation logic given by symbolic heaps with a sin-
gle fixed inductive predicate lseg, denoting linked list segments.
Berdine et al. [1] provided the first decidability result for satisfia-
bility and entailment of this fragment. Cook et al. [11] improved on
this result by giving a graph-based decision procedure which oper-
ates in polynomial time, implemented in the tool SELOGER [14].
Recently, Piskac et al. [22] presented another decision procedure
based on translating entailments to an intermediate logic of “graph
reachability and stratified sets” which, given suitable axioms, is
then decided by an SMT solver. The technique works as well for
slightly more general structures, such as sorted list segments and
doubly linked lists. Finally, Navarro Pérez and Rybalchenko [19]
provided an SMT encoding for satisfiability and entailment in an-
other extension of the fragment, allowing the pure part of the sym-
bolic heaps to contain SMT formulas for arbitrary theories, rather
than simple (dis)equalities.

7.2 Satisfiability in other logics with inductive definitions
The consistency of inductive predicates defined by first-order Horn
clauses has been widely studied in different contexts. One well-
known application of such clausal definitions is Datalog, a rule-
based query language for relational databases with ties to logic
programming. Datalog rules roughly correspond to our inductive
rules where the spatial component of rule bodies is always emp.
The satisfiability of Datalog queries was shown to be decidable by

Shmueli [24]. More recently, Hoder et al. [15] describe a Datalog-
based engine, µZ, for the fixed point computation of inductive
definitions. In contrast to our approach, they compute concrete
fixed points based on explicit underlying ground facts (which is to
say that they focus on model checking, as opposed to satisfiability
checking).

More generally, there has been some interest from the program
analysis and verification community in the satisfiability of Horn
and Horn-like clauses. Bjørner et al. [4] advocate the use of such
clauses as an interchange format for software model checking tools,
while Grebenshchikov et al. [13] describe an abstraction-based
procedure for finding models and checking the satisfiability of
Horn-like clauses in the context of program analysis.

An interesting line of research for future work would be to
extend the current tools and techniques for first-order Horn clauses
to the situation in which separation logic operators are permitted in
the bodies of rules.

7.3 Separation logic tools with general inductive predicates
Several analysis tools based on separation logic allow the user
to provide their own inductive definitions for spatial predicates.
We have already mentioned in our evaluation (Section 6) the
theorem prover CYCLIST [7], which treats separation logic with
user-defined inductive predicates, and the related abductive prover
CABER [6], which automatically infers inductive predicate defi-
nitions as safety/termination preconditions for while programs.
Another such tool is THOR [18, 17], which allows for proofs of
memory safety and for generating sound arithmetic abstractions of
heap programs (with respect to safety and termination). In THOR
the specification must be entered manually, including the defini-
tions of any inductive predicates; the consistency of such defini-
tions is the responsibility of the user. Other automated separation
logic tools allowing the user to define their own inductive predi-
cates include: HIP/SLEEK [10], a combined theorem prover and
verification system for a simple C-like language; the JSTAR [12]
prover for Java programs, which requires that the user provides
rules for, as well as the definitions of, any inductive predicates; and
the automated shape analysis described in [9], which infers induc-
tive predicate definitions based on “structural invariant checkers”,
which are essentially user-provided inductive definitions. We be-
lieve that our decision procedure could be of assistance in such
settings, by warning the user about unintentionally inconsistent
predicate definitions.

8. Conclusion and future work
The question of whether or not satisfiability of the symbolic heap
fragment of separation logic with general inductive predicates is
decidable has stood open for some time. Following the recent
achievement of a partial positive answer to this question in [16],
in this paper we resolve this question affirmatively for the general
case.

Our decidability proof has the advantage of being construc-
tive: we give a decision procedure for checking the satisfiability
of inductively defined predicates and of individual rules defining
those predicates. In addition, we provide complexity results stating
that the general case of the satisfiability problem is EXPTIME-
complete, and its restriction to predicates with at most k ≥ 3 ar-
guments is still NP-complete. Despite these high complexities, our
experiments indicate that, for realistic predicate definitions arising
in practice, our prototype implementation is already able to solve
the decision problem in milliseconds.

Our solution to the satisfiability decision problem for general
inductive predicates in separation logic opens up possible appli-
cations in symbolic execution and verification of heap-based pro-
grams with arbitrary data structure shapes. For example, problems

11 2013/7/12

such as deciding whether a given symbolic heap describes any con-
crete memory state or deciding the consistency of abduced precon-
ditions in separation logic [6] have now come within reach of me-
chanical solutions.

Taking a different direction, one could investigate whether our
techniques for deciding satisfiability of inductive definitions ex-
tends to more general variants of separation logic, where general in-
ductive predicates are still allowed, but formulas are less restricted.
Possible candidates for such extensions include: higher-order sep-
aration logic [3]; the fragment in which formulas may contain pure
assertions beyond (dis)equalities as in [19]; and fragments in which
∗ and ∧ may be nested.

References
[1] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable

fragment of separation logic. In Proc. FSTTCS’04, volume 3328 of
LNCS, pages 97–109, 2004.

[2] Josh Berdine, Byron Cook, and Samin Ishtiaq. Slayer: Memory
safety for systems-level code. In Proc. CAV’11, volume 6806 of
LNCS, pages 178–183, 2011.

[3] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI-
hyperdoctrines, higher-order separation logic, and abstraction. ACM
TOPLAS, 29(5), 2007.

[4] Nikolaj Bjørner, Kenneth McMillan, and Andrey Rybalchenko.
Program verification as satisfiability modulo theories. In Proc.
SMT’12, pages 3–11, 2012.

[5] James Brotherston. Formalised inductive reasoning in the logic of
bunched implications. In Proc. SAS’07, volume 4634 of LNCS, pages
87–103, 2007.

[6] James Brotherston and Nikos Gorogiannis. Cyclic abduction of
inductively defined safety and termination preconditions. Technical
Report RN/13/14, University College London, 2013.

[7] James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl
Petersen. A generic cyclic theorem prover. In Proc. APLAS’12,
volume 7705 of LNCS, pages 350–367, 2012.

[8] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and
Hongseok Yang. Compositional shape analysis by means of bi-
abduction. Journal of the ACM, 58(6):26, 2011.

[9] Bor-Yuh Evan Chang, Xavier Rival, and George Necula. Shape
analysis with structural invariant checkers. In Proc. SAS’07, volume
4634 of LNCS, pages 384–401, 2007.

[10] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao
Qin. Automated verification of shape, size and bag properties via
user-defined predicates in separation logic. Science of Computer
Programming, 77(9):1006–1036, 2012.

[11] Byron Cook, Christoph Haase, Joël Ouaknine, Matthew J. Parkinson,
and James Worrell. Tractable reasoning in a fragment of separation
logic. In Proc. CONCUR’11, volume 6901 of LNCS, pages 235–249,
2011.

[12] Dino Distefano and Matthew J. Parkinson. jStar: towards practical
verification for Java. In Proc. OOPSLA’08, pages 213–226, 2008.

[13] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey
Rybalchenko. Synthesizing software verifiers from proof rules. In
Proc. PLDI’12, pages 405–416, 2012.

[14] Christoph Haase, Samin Ishtiaq, Joël Ouaknine, and Matthew J.
Parkinson. Seloger: A tool for graph-based reasoning in separation
logic. In Proc. CAV’13, LNCS, 2013. To appear.

[15] Krystof Hoder, Nikolaj Bjørner, and Leonardo de Moura. µZ– an
efficient engine for fixed points with constraints. In Proc. CAV’11,
volume 6806 of LNCS, pages 457–462, 2011.

[16] Radu Iosif, Adam Rogalewicz, and Jiri Simacek. The tree width
of separation logic with recursive definitions. In Proc. CADE’13,
volume 7898 of LNAI, pages 21–38, 2013.

[17] Stephen Magill. Instrumentation Analysis: An Automated Method for
Producing Numeric Abstractions of Heap-Manipulating Programs.
PhD thesis, CMU Pittsburgh, PA, USA, 2010.

[18] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay.
Automatic numeric abstractions for heap-manipulating programs. In
Proc. POPL’10, pages 211–222, 2010.

[19] Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation
logic modulo theories. CoRR, abs/1303.2489, 2013.

[20] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Proc. CSL’01, volume
2142 of LNCS, pages 1–19, 2001.

[21] Christos H. Papadimitriou and Mihalis Yannakakis. A note on
succinct representations of graphs. Inf. Control, 71(3):181–185,
December 1986.

[22] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating
separation logic using SMT. In Proc. CAV’13, volume 8044 of LNCS,
2013. To appear.

[23] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc. LICS’02, pages 55–74, 2002.

[24] Oded Shmueli. Decidability and expressiveness aspects of logic
queries. In Proc. PODS’87, pages 237–249, 1987.

[25] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno,
Byron Cook, Dino Distefano, and Peter O’Hearn. Scalable shape
analysis for systems code. In Proc. CAV’08, volume 5123 of LNCS,
pages 385–398, 2008.

12 2013/7/12

