
A Generi Cyli Theorem Prover

James Brotherston

1
, Nikos Gorogiannis

1
, and Rasmus L. Petersen

2

1
Dept. of Computer Siene, University College London

2
Mirosoft Researh Cambridge

Abstrat. We desribe the design and implementation of an automated

theorem prover realising a fully general notion of yli proof. Our tool,

alled Cylist, is able to onstrut proofs obeying a very general yle

sheme in whih leaves may be linked to any other mathing node in the

proof, and to verify the general, global in�nitary ondition on suh proof

objets ensuring their soundness. Cylist is based on a new, generi

theory of yli proofs that an be instantiated to a wide variety of log-

is. We have developed three suh onrete instantiations, based on: (a)

�rst-order logi with indutive de�nitions; (b) entailments of pure separa-

tion logi; and () Hoare-style termination proofs for pointer programs.

Experiments run on these instantiations indiate that Cylist o�ers

signi�ant potential as a future platform for indutive theorem proving.

1 Introdution

In program analysis, indutive de�nitions are essential for speifying the shape of

omplex data strutures held in memory. Thus automated reasoning about suh

de�nitions, a.k.a. indutive theorem proving, is a key ativity supporting program

veri�ation. Unfortunately, the expliit indution rules employed in standard

indutive proofs pose onsiderable problems for proof searh [10℄. Cyli proof

has been reently proposed as an alternative to traditional proof by expliit

indution for �xed point logis. In ontrast to standard proofs, whih are simply

derivation trees, a yli proof is a derivation tree with �bak-links� (see Figure 1),

subjet to a global soundness ondition ensuring that the proof an be read as

a proof by in�nite desent à la Fermat [5℄. This allows expliit indution rules

to be dropped in favour of simple unfolding or �ase split� rules.

Cyli proof systems seem to have �rst arisen in omputer siene as tableaux

for the propositional modal µ-alulus [23℄. Sine then, yli proof systems have

been proposed for a number of appliations, inluding: �rst-order µ-alulus [22℄;

verifying properties of onurrent proesses [20℄; �rst-order logi with indutive

de�nitions [4, 9℄, bunhed logi [6℄; and termination of pointer programs [7℄.

However, despite the fairly rih variety of formal yli proof systems, automated

tools implementing these formal systems remain very thin on the ground.

In this paper we desribe the design and implementation of a new yli

theorem prover, alled Cylist, based on a generi theory of yli proofs and

instantiable to a wide variety of logial systems. We have implemented three

onrete instantiations of Cylist: (a) a system for a fragment of �rst-order

1

•

• • · · · •
(Inferene)

•

(Axiom)

•

(Axiom)

•

(Axiom)

•

•

• • · · · •
(Inferene)

•

(Axiom)

•

•

•

Fig. 1. Left: a typial proof strutured as a �nite tree, with the parent-hild relation

between nodes (•) given by a set of inferene rules. Right: a typial yli pre-proof,

strutured as a tree proof with �bak-links� between nodes (shown as arrows).

logi with indutive de�nitions, based on the formal system in [4℄; (b) a system

for entailment in separation logi, extending the one in [8℄; and () a Hoare-style

system for termination of pointer programs using separation logi, based on [7℄.

In Setion 2, we give our general yli proof framework and, in parallel,

disuss our implementation of Cylist using its instantiation (a) to �rst-order

logi as a running example.

As above, yli proofs an be generally haraterised as derivation trees with

bak-links (�pre-proofs�) obeying a global, in�nitary soundness ondition quali-

fying them as bona �de yli proofs. The soundness ondition states that every

in�nite path in the pre-proof must possess a syntati trae that �progresses�

in�nitely often; informally, a trae an be thought of as a well-founded measure

and its progress points to strit dereases in this measure. Our generi theory

formalises this haraterisation of yli proofs, whih is entirely independent of

the hoie of any partiular logial formalism.

There are two main tehnial obstales to implementation of yli proof,

both stemming from the strutural omplexity of yli proofs ompared to stan-

dard proofs. First, the prover must be able to form bak-links in the derivation

tree. This inevitably leads to a global view of proofs, rather than one loalised

to the urrent subgoal as in most theorem provers. Seond, the prover must be

able to hek whether or not a given pre-proof satis�es the general soundness

ondition. Our approah to both di�ulties is desribed in Setion 2.

Setion 3 brie�y desribes our instantiations (b) and () of Cylist to sep-

aration logi frameworks. Then, in Setion 4, we examine some of the issues

pertaining to automated proof searh in Cylist, and report on our experimen-

tal evaluation of the prover's performane in all three instantiations. Partiular

issues for yli proof searh inlude looking for potential bak-links in the proof,

and deiding when to invoke the (potentially expensive) soundness hek. Other

issues, suh as the priority ordering of rules and the onjeture / appliation of

appropriate lemmas during a proof, are features of indutive theorem proving

in general. Finally, Setion 5 ompares our ontribution with related work, and

Setion 6 outlines diretions for future work.

The theoretial framework on yli proofs in Setion 2 is based on its earlier

presentation in the �rst author's PhD thesis [5℄.

2

2 Cyli proofs and the Cylist prover

In this setion we develop a general notion of a yli proof system, whih gener-

alises the onrete formal systems given in, e.g., [4, 6�8, 20�23℄. In an interleaved

fashion we also desribe Cylist, a mehanised theorem proving framework for

yli proof. We use its instantiation CylistFO to �rst-order logi with indu-

tive prediates as a running example to illustrate our ideas and design hoies.

However, most of the issues we disuss here are relevant to any logial instan-

tiation of the prover, and in partiular to the two other instantiations we have

also implemented: pure entailment in separation logi (f. [8℄) and termination of

pointer programs based on separation logi (f. [7℄). In order to avoid overwhelm-

ing the reader with tehnial details, we intentionally elide some �ner points of

our implementation to begin with, and introdue these gradually as we go along.

2.1 Implementation platform. The ore of Cylist is an OCaml funtor

parameterised over a user-de�ned datatype that desribes the desired logi and

its basi rules of inferene. The funtor provides funtions for proof searh and

basi manipulation of yli proofs. Cylist also provides an OCaml interfae

to a ustom model heker in C++ that heks the soundness of yli proofs.

In ontrast to e.g. [8℄, we deided against implementing Cylist inside a

theorem prover suh as Isabelle or HOL Light. This is beause the strutural

mahinery of yli proof annot be straightforwardly represented inside a tool

employing a standard, tree-like internal notion of proof. Consequently, as in [8℄, a

deep embedding of yli proof systems would be neessary, whereby yli proofs

are represented as expliit datatypes, and reasoned about using funtions de�ned

over those datatypes. In addition to its tehnial di�ulty, this approah negates

most of the advantages of using a trusted theorem prover, as orretness depends

fundamentally on the (unproven) orretness of the deep embedding as well as

the orretness of the external soundness heker. Thus we gain implementation

e�ieny at relatively little expense of on�dene by working diretly in OCaml.

2.2 Sequents and inferene rules. First, we assume a set S of objets,

orresponding to the `•'s in Figure 1 and alled sequents, from whih our proofs

will be built. Next we assume a set R of proof rules whih are eah of the form:

S1 . . . Sn
(R)

S

where n ≥ 0 and S, S1, . . . , Sn are sequents. S is alled the onlusion of rule

(R) and S1, . . . , Sn its premises ; a rule with no premises is alled an axiom.

(Stritly speaking, the rules are usually understood as rule shemata, where

parts of sequents may at as parameters.) A derivation tree is then, as usual, a

tree eah of whose nodes v is labelled with a sequent S(v), and the rule R(v) of
whih it is the onlusion, in suh a way as to respet the proof rules.

Cylist expets a user-de�ned type for sequents, and for inferene rules,

eah of whih redues a given onlusion sequent to a list of premises. However,

beause rules are really rule shemata, a rule may have multiple di�erent appli-

ations to a sequent. To support this, rules in Cylist return a list of lists of

3

premises, orresponding to the results of all possible appliations of the rule to

the sequent. In partiular, axioms always return a list of empty lists of premises.

In CylistFO, we de�ne a type for negation-free ∀∃-sequents in disjun-

tive normal form, built from �rst-order formulas with equality and disequality,

funtion terms and indutively de�ned prediates. It is straightforward to de�ne

standard rules and axioms for handling equalities, ontradition, simpli�ation,

quanti�ers and onjuntion / disjuntion.

2.3 Indutive prediates and unfolding rules. Indutive prediates are

spei�ed by a set of indutive rules eah of the form F ⇒ P t, where P is an

indutive prediate, t is a tuple of appropriately many terms and F is a formula

(subjet to ertain restritions to ensure monotoniity of the de�nitions).

Example 1. We an de�ne a �natural number� prediate N , mutually de�ned

�even / odd� prediates E and O, and a ternary �addition� prediate Add (where

Add(x, y, z) should be read as �x+ y = z�) via the following indutive rules:

⇒ N0 ⇒ E0 Ny ⇒ Add(0, y, y)
Nx ⇒ Nsx Ox ⇒ Esx Add(x, y, z) ⇒ Add(sx, y, sz)

Ex ⇒ Osx

where 0 is a onstant symbol and s is a unary funtion symbol, understood as

the usual zero and �suessor� funtion in Peano arithmeti respetively. ⊓⊔

Given a set of indutive rules, CylistFO generates rules for unfolding indutive

prediates on the right and left of sequents. As usual, the right-unfolding rules

for a prediate P are just sequent versions of the indutive rules introduing P .

Example 2. Applying the right-unfolding rule orresponding to Nx ⇒ Nsx from

Example 1 to the onlusion sequent F ⊢ Nsy,Nssz3 yields:
[

[F ⊢ Ny,Nssz] ; [F ⊢ Nsy,Nsz]
]

(RN)
F ⊢ Nsy,Nssz

Note the braketing indiating the two possible appliations of this rule (we use

`;' to separate list items), eah resulting in a single premise sequent. ⊓⊔

The left-unfolding rule for an indutive prediate an be seen as a ase distintion

priniple that replaes an indutive prediate in the left of a onlusion sequent

with a premise for every lause of its de�nition.

Example 3. Applying the left-unfolding rule for the prediate E given in Exam-

ple 1 to the onlusion sequent Ey ⊢ G yields the following:

[

[y = 0 ⊢ G ; y = sz,Oz ⊢ G]
]

(LE)
Ey ⊢ G

where z is a fresh variable. Observe that, in this ase, there is only one possible

appliation of the rule whih results in two premises. ⊓⊔

3

As usual in sequent aluli, omma orresponds to ∧ in the LHS and ∨ in the RHS.

4

2.4 Cyli proofs and the forming of bak-links. We �rst de�ne yli

pre-proofs below. Here, a leaf of a derivation tree is alled open if it is not the

onlusion of an axiom, i.e. if R(v) is unde�ned.

De�nition 1 (Pre-proof). A pre-proof of a sequent S is a pair (D,L), whereD
is a �nite derivation tree whose root is labelled by S, and L is a bak-link funtion

assigning to every open leaf ℓ of D a node L(ℓ) of D suh that S(L(ℓ)) = S(ℓ).
Any pre-proof P = (D,L) an be understood as a graph by identifying eah

open leaf ℓ of D with L(ℓ). A path in P is an in�nite sequene vi of nodes of P
suh that for every i, either (yi, yi+1) is an edge in D, or L(vi) = vi+1.

Aording to De�nition 1, a bak-link in a yli pre-proof is formed by

assigning to a leaf ℓ in the derivation tree another node L(ℓ) suh that S(ℓ) =
S(L(ℓ)). Cylist relaxes this strit requirement slightly and permits bak-links

between a leaf node S1 and any other node S2 suh that a user-de�ned mathing

funtion returns true, given S1, S2 as arguments.

4

In CylistFO, we use the following mathing funtion: S1 mathes S2 if S1

is derivable from S2 using only weakening and substitution priniples.

Example 4. In CylistFO, the sequent S1 below mathes S2 beause there is a

derivation of S1 from S2 using weakening and substitution priniples, as follows:

S2 : Oy ⊢ Ny
(Subst)

Osz ⊢ Nsz
(Weak)

S1 : Osz,Essz, Ez ⊢ Nsz,Ny

Thus a leaf labelled by S1 an be bak-linked to any node labelled by S2. ⊓⊔

2.5 De�ning the trae pair funtion. To qualify as a bona �de proof, a

yli pre-proof must satisfy a global soundness ondition, de�ned using the

notion of a trae along a path in a pre-proof.

De�nition 2 (Trae). Let T be a set of trae values. A trae pair funtion is a

funtion δ : (S×R×S) → Pow((T ×T ×{0, 1})) (where Pow(−) is powerset) suh
that for any S, S′ ∈ S and R ∈ R, the set δ(S,R, S′) is �nite (and omputable).

If (α, α′, n) ∈ δ(S,R, S′) for some n ∈ {0, 1} then (α, α′) is said to be a trae

pair for (S,R, S′), and if n = 1 then (α, α′) is said to be a progressing trae pair.

Now let π = (vi)i≥0 be a path in a pre-proof P . A trae following π is a

sequene τ = (αi)i≥0 suh that, for all i ≥ 0, (αi, αi+1) is a trae pair for

(S(vi), R(vi), S(vi+1)). If in�nitely many of these (αi, αi+1) are progressing trae
pairs, then τ is said to be in�nitely progressing.

Sine we are only interested in traes following paths in a pre-proof, we may

assume for simpliity that the domain of a trae pair funtion δ, written dom(δ),

4

One ould also simply inlude a rule allowing one to onlude S1 from S2 whenever

S1 mathes S2, but our treatment is typially more onvenient for proof searh.

5

is restrited to triples (S,R, S′) suh that S is the onlusion of an instane of

the rule R and S′
is one of the premises of that instane. Given suh a δ, the

tuple (S,R, T , δ) is then alled a yli proof system.

In order to failitate heking the global soundness ondition, Cylist re-

quires pre-proofs to arry information about trae pairs. Aording to Defn. 2,

a trae pair funtion δ takes as input a sequent S, the rule R applied to it

and one of the premises S′
obtained as a result, and returns the sets of assoi-

ated progressing and non-progressing trae pairs. Intuitively, a progressing trae

pair identi�es a measure that beomes stritly smaller when moving from S to

S′
under the appliation of R, while a non-progressing trae pair identi�es a

measure that at least does not inrease. (Defn. 5 below will make preise the

orrespondene between trae pairs and measures.)

In CylistFO, we adopt the notion of trae from [4, 5℄. There, trae values

are atomi formulas of the form P t ourring on the left of sequents, where P is

an indutive prediate. Then (P t, Qt
′) is a progressing trae pair on (S,R, S′)

if R is a left-unfolding rule, P t is the formula in S being unfolded and Qt
′
is

obtained in S′
by unfolding P t. (P t, Qt

′) is a non-progressing trae pair if P t

and Qt
′
our on the left of S and S′

respetively and P t ≡ Qt
′
, where the

equivalene is equality modulo any substitution applied by the rule R.

To implement this notion in CylistFO, eah atomi formula P t in the left

of a sequent is annotated with a natural number, alled its tag. Then for any

onlusion sequent S and rule R we use these tags to attah to eah premise S′

the lists of progressing and non-progressing trae pairs assoiated with (S,R, S′).
Similarly, mathing funtions are also required to return lists of (usually non-

progressing) trae pairs for mathing sequents.

Example 5. The following example shows how the premises of an instane of

(LE) are extended with lists of progressing and non-progressing trae pairs (in

that order), where the numeri subsripts on atomi formulas are tags:

[

[(N1x, y = 0 ⊢ G, [], [(1, 1)]) ; (N1x, y = sz,O3z ⊢ G, [(2, 3)], [(1, 1)])]
]

(LE)
N1x,E2y ⊢ G

Thus, in the right hand premise, the �rst list indiates that (2, 3), denoting
the formulas E2y in the onlusion and O3y in the premise, is a progressing

trae pair, and the seond list indiates that (1, 1), denoting the formulas N1x

ourring in both onlusion and premise, is a non-progressing trae pair. The

left hand premise is similar, exept that there are no progressing trae pairs. ⊓⊔

2.6 Soundness of yli proofs and deision proedures. It is lear that

a pre-proof may not be sound, e.g., a sequent bak-linked to itself. The following

de�nition aptures a su�ient ondition of soundness.

De�nition 3 (Cyli proof). A pre-proof P in a yli proof system is said

to be a (yli) proof if, for every in�nite path (vi)i≥0 in P , there is a tail of the
path, π = (vi)i≥n, suh that there is an in�nitely progressing trae following π.

6

Our trae-based ondition qualifying pre-proofs as proofs follows the one by

Sprenger and Dam [21℄, who showed that their trae ondition for the �rst-order

µ-alulus subsumed a number of previous formulations by others. Analogous

trae onditions were adopted for other logis in [4, 6, 7℄. Sprenger and Dam also

established that their trae ondition was deidable, a result we extend to the

generi notion of trae given by Defn. 2.

Theorem 4 (Deidability of soundness ondition). In any yli proof

system (S,R, T , δ) it is deidable whether or not a pre-proof is a yli proof.

Proof. (Sketh) From a given pre-proof P we onstrut two Bühi automata

over strings of nodes of P . The path automaton APath simply aepts all in�nite

paths in P . The trae automaton ATrace aepts all in�nite paths in P suh

that an in�nitely progressing trae exists on some tail of the path. P is then a

proof if and only if ATrace aepts all strings aepted by APath. We are then

done sine inlusion between the languages of Bühi automata is known to be

deidable. The full details appear as Appendix A of [5℄. ⊓⊔

Cheking that a pre-proof P satis�es the soundness ondition on yli proofs

(Defn. 3) amounts to heking language inlusion between two Bühi automata

APath and ATrace onstruted from P (see the proof of Theorem 4). We imple-

ment this hek as a funtion that, given a Cylist pre-proof, onstruts the

two automata and then uses a model heker to deide language inlusion.

We use transition-labelled Bühi automata [11℄ in onstruting APath and

ATrace, as they allow the most suint representation. We represent suh an

automaton as a direted graph with labelled edges, where (u, v, l, n) with n ∈
{0, 1} desribes an edge from u to v aepting the label l. The automaton aepts

any in�nite string of labels suh that edges with n = 1 are visited in�nitely often.

The path automaton APath aepts all in�nite paths in P , and thus it has an

edge (u, v, v, 1) for every edge (u, v) of P (viewing P as a graph in the obvious

way). The trae automaton ATrace is more ompliated, and built using both the

node identi�ers of P and the trae pair information attahed to rule instanes

as desribed above. Essentially, ATrace aepts any in�nite path through P that

eventually (a) is deorated with trae values that agree with the trae pair

funtion and (b) goes through a progressing trae pair in�nitely often. Thus,

in partiular, ATrace ontains an edge ((u, α1), (v, α2), v, n) whenever (u, v) is

an edge of P and (α1, α2) is a trae pair annotating the orresponding rule

instane in P , with n = 1 if (α1, α2) is progressing and n = 0 otherwise. For full

details of the onstrution, see Appendix A of [5℄.

Our model heker is built using Spot [13℄, an open-soure C++ library for

building ustom, on-the-�y model hekers. We also provide an OCaml interfae

between Cylist and the model-heking C++ ode.

Cheking inlusion between Bühi automata is omputationally expensive,

as it entails omplementing one of the automata, whih an lead to an explosion

in the number of states [15℄. Thus readers may wonder whether the general

in�nitary soundness ondition on yli proofs ought to be disarded in favour

7

of a stronger but simpler ondition. The following (admittedly arti�ial) example

is intended to show that a fairly omplex proof ondition is in fat needed.

Example 6. De�ne a binary prediate R via the following indutive rules:

⇒ R(0, y) R(x, 0) ⇒ R(sx, 0) R(ssx, y) ⇒ R(sx, sy)

The following is a yli proof of the sequent Nx,Ny ⊢ R(x, y), where N is the

natural number prediate de�ned in Example 1 (for brevity, we omit appliations

of equality rules, ontration and weakening):

(RR)

⊢ R(0, y)

(∗) Nx,Ny ⊢ R(x, y)
(Subst)

Nx′, N0 ⊢ R(x′, 0)
(RR)

Nx′, N0 ⊢ R(sx′, 0)

(∗) Nx,Ny ⊢ R(x, y)
(Subst)

Nssx′, Ny′ ⊢ R(ssx′, y′)
(Cut)

Nx′, Ny′ ⊢ R(ssx′, y′)
(RR)

Nx′, Ny′ ⊢ R(sx′, sy′)
(LN)

Nx′, Ny ⊢ R(sx′, y)
(LN)

(∗) Nx,Ny ⊢ R(x, y)

where we suppress the easy proof that Nx′ ⊢ Nssx′
in the instane of (Cut) on

the right hand branh. The leaves marked (∗) are both bak-linked to the root.

To see that this pre-proof is in fat a yli proof, we must show that any

in�nite path π has a tail on whih an in�nitely progressing trae exists. There

are two ases to onsider. First, if π has a tail onsisting entirely of repetitions

of the left-hand loop, then we an form a trae following this tail given by the

overlined formulas, whih progresses (in�nitely often) at the �rst appliation of

(LN). Otherwise, π must traverse the right-hand loop in�nitely often (and might

also traverse the left-hand loop in�nitely often). In that ase, we an form a trae

following π given by the underlined formulas, whih progresses (in�nitely often)

at the seond appliation of (LN). ⊓⊔

CylistFO is in fat apable of proving the above example. We note that

the overlapping of yles in this example is essentially unavoidable, and that

we are fored to selet di�erent traes for the left-hand yle depending on the

order in whih these overlapping yles are traversed. Thus, the proof ondition

annot be restated in this ase as a simpler property to be satis�ed by eah yle

individually. However, this proof does satisfy Brotherston's ondition of having

a �trae manifold�, whih is stated in terms of onneted sets of yles [4, 5℄.

2.7 Soundness of yli proof systems. Although our implementation of

yli proof naturally deals only with the syntati notion of provability given by

Defn. 3, we shall nevertheless outline here how soundness of a yli proof system

may be established. We assume a set I of interpretations of sequents, whih are

funtions from S into {true, false}; we write I |= S to mean I(S) = true. S is

alled valid if I |= S for all I ∈ I.

De�nition 5 (Ordinal trae funtion). An ordinal trae funtion for a yli

proof system (S,R, T , δ) and interpretations I is a funtion σ : (T × I) → O,

8

applyrule(rule,proof,node) :

begin

result := [℄;

appliations := rule(node);

foreah subgoallist in appliations do

(proof',subgoalnodes) :=

replaenode(proof, node, subgoallist, rule);

result := (proof',subgoalnodes) :: result;

end

return result;

end

baklink (mathfun,proof,node) :

begin

result := [℄;

foreah node' in proof do

if mathfun node node' then

proof' := linknode(proof,node,node',mathfun);

if sound(proof') then result := (proof', [℄) :: result;

end

end

return result;

end

proofsearh(bound,proof,node) :

begin

if losed(node) then return proof;

if bound=0 then return nil;

foreah rule in ruleset do

if rule is a mathing funtion then

results := baklink(rule, proof, node);

else

results := applyrule(rule, proof, node);

end

foreah (proof', subgoalnodes) in results do

p' := proof';

foreah node' in subgoalnodes do

p' := proofsearh(bound-1,p',node');

if p'=nil then break;

end

if p'=nil then return nil else return p';

end

end

end

Fig. 2. Pseudoode for proof searh in Cylist.

where O is an initial segment of the ordinals, satisfying the following onditions

for all I ∈ I and S ∈ S:

if I 6|= S then ∃S′ ∈ S, R ∈ R, I ′ ∈ I.
I ′ 6|= S′

and (S,R, S′) ∈ dom(δ) and

if (α, α′, n) ∈ δ(S,R, S′) then

{

σ(α′, I ′) ≤ σ(α, I) if n = 0
σ(α′, I ′) < σ(α, I) if n = 1

We note that the existene of an ordinal trae funtion subsumes loal soundness

of the proof rules, beause of the requirement in De�nition 5 that falsi�ability

of the onlusion of a rule implies falsi�ability of one of its premises.

In the ase of �rst-order logi, it is well known that an indutive prediate

P an be generated semantially via a hain of ordinal-indexed approximants

(P γ)γ≥0 . Here, given a suitable interpretation I the ordinal trae funtion

σ(P t, I) returns the smallest γ suh that I |= P γ
t. See e.g. [5, 4, 9℄ for details.

Theorem 6 (Soundness). Suppose there exists an ordinal trae funtion for

(S,R, T , δ) and I. Then, if S has a yli proof, then S is valid.

Proof. (Sketh) Let P be a yli proof of S, and suppose for ontradition

that I 6|= S. Using loal soundness of the rules, we an onstrut an in�nite

path π = (vj)j≥0 in P and an in�nite sequene (Ij)j≥0 of interpretations suh

that Ij 6|= S(vj) for all j ≥ 0. Sine P is a yli proof, there exists an in�nitely

progressing trae (αj)j≥n following some tail (vj)j≥n of π. It follows from De�ni-

tion 5 that the sequene (σ(αj , Ij))æ≥n is monotonially dereasing, and stritly

dereases in�nitely often. This ontradits the well-foundedness of O. ⊓⊔

2.8 Proof searh. Provided with the appropriate desriptions of sequents,

indutive de�nitions and inferene rules, Cylist instantiates a proof searh

funtion, proofsearh(), shown in pseudo-ode in Figure 2. This funtion, given

9

a proof, a node within that proof and a maximum reursion depth, performs

an iterative depth-�rst searh aiming at losing open nodes in the proof. The

global variable �ruleset� provides the ordered list of inferene rules and mathing

funtions de�ned by the user; the funtions replaenode() and linknode() do

the requisite graph surgery in order to replae an open node in the proof with

either the appliation of an inferene rule or a bak-link, respetively. Finally,

the funtion sound() heks the global soundness of a yli proof. The design

and trade-o�s regarding this algorithm will be further disussed in Setion 4.

3 Separation logi instantiations of Cylist

We brie�y present the two instantiations of Cylist based on separation logi.

3.1 Separation logi entailment prover. Cylist

SL

is a prover for separa-

tion logi similar to the prover in [8℄. The syntax (left) and semantis (right) of

the ∀∃ DNF-like fragment of separation logi the prover aepts appear below.

t ::= x | nil
α ::= t = t

| t 6= t
| emp

| t 7→ 〈t, . . . , t〉
| P (t, . . . , t)

H ::= α | H ∗H
F ::= H

| F ∨ F
| ∃x.F

s(nil) /∈ dom(h), for all s, h
s, h |= x = y i� s(x) = s(y)
s, h |= x 6= y i� s, h 6|= x = y
s, h |= emp i� h = ∅
s, h |= a0 7→ 〈a1, . . . , an〉 i� h = {s(a0) 7→ (s(a1), . . . , s(an))}
s, h |= H1 ∗H2 i� ∃ domain-disjoint h1, h2, s.t.

s, h1 |= H1 and s, h2 |= H2 and h = h1 ◦ h2

s, h |= F1 ∨ F2 i� s, h |= F1 or s, h |= F2

s, h |= ∃x.F i� ∃v. s[x 7→ v], h |= H

where staks s are funtions from variables to values, heaps h are �nite partial

maps from addresses to value tuples (where addresses are a subset of values) and

◦ is disjoint union. The semantis of indutive prediates are standard [6, 7℄.

Indutive prediates are de�ned in a manner similar to that in CylistFO.

For example, an ayli, possibly empty, singly-linked list segment is de�ned as:

(a1 = a2) ⇒ ls(a1, a2) (a1 6= a2) ∗ a1 7→ 〈e3〉 ∗ ls(e3, a2) ⇒ ls(a1, a2)

Left- and right-unfolding rules are generated as in CylistFO. Bak-linking is

also as in CylistFO, exept that lassial weakening is replaed by the spatial

weakening of separation logi, aptured by the rule B ⊢ C =⇒ A ∗B ⊢ A ∗ C.

3.2 Separation logi termination prover. Cylist

Term

implements a ter-

mination prover for heap-manipulating programs in a simple imperative lan-

guage, the theory of whih was presented in [7℄. By way of illustrating the pro-

gramming language, a program that traverses a linked list is as follows.

0: if a1=nil goto 3; 1: a1 := a1→next; 2: goto 0; 3: stop.

Sequents are of the form F ⊢i↓, where F is a preondition in separation logi as

in Cylist

SL

, and i is the line of the program to whih the sequent applies. Suh

10

a sequent expresses the fat that if exeution starts with the program ounter

set to i at a state satisfying F , then the program will (safely) terminate. For

example, the sequent ls(a1, nil) ⊢0↓means that the above program will terminate

if started at line 0 with a heap satisfying ls(a1, nil).
Cylist

Term

builds on Cylist

SL

. Additional are rules for the symboli

exeution of ommands, derived via weakest preonditions. Unfolding rules for

indutive prediates are generated in a manner similar to that in Cylist

SL

apart from the fat that there are no right-unfold rules. Bak-linking is also

similar to that in Cylist

SL

, exept that in Cylist

Term

the program ounters

in the sequents must also math (exatly). We note that Cylist

Term

is not a

program analysis as it laks abstration apability.

4 Proof searh issues and experimental results

Designing a proof searh proedure for a yli theorem prover poses some design

hallenges distint to those of standard proof searh. Here we disuss the main

issues, and report on our tests of Cylist's proof searh performane.

4.1 Global searh strategy. Non-anestral bak-links, i.e. bak-links that

point to a sequent whih is not an anestor of the bak-link, an signi�antly

redue the depth of a proof [4℄. Thus it is reasonable to onjeture that a breadth-

�rst searh might �nd these shorter proofs, and onsequently yield a faster searh

algorithm than depth-�rst. Our early experiments overwhelmingly favoured the

latter. We onjeture that the high fan-out degree of the searh spae makes

breadth-�rst searh impratial, even though shorter proofs may be found. Also,

employing a depth-�rst strategy will allow some non-anestral bak-links `to the

left' of the urrent subgoal but also to open subgoals `to the right' of the urrent

subgoal, thus representing a reasonable ompromise. A best-�rst strategy might

perform better and we intend to pursue this question in future work.

4.2 Soundness heking. Invoking a model heker to hek the soundness

of a pre-proof an be a ostly step during proof searh. To mitigate this we

employ an abstration/minimisation heuristi that redues the size of the proof

graphs to be heked by pruning leaf subgoals and omposing ertain types of

suessive ars. In the ontext of iterative depth-�rst searh we also memoise the

results of these heks so as to avoid dupliation of e�ort. This led to an order

of magnitude of redution in the ost of the soundness hek, and is re�eted in

the low proportion of time spent heking soundness in our tests (see Table 4).

4.3 Forming bak-links. When a partial pre-proof is found to be unsound

then we know that it an never form part of a sound, losed proof. Thus we

have the hoie of either heking soundness one when the proof is losed, or to

apply the hek eagerly, i.e. every time a bak-link is formed. Our tests showed a

lear advantage in the eager soundness heking strategy under both depth- and

breadth-�rst searh shemes. We onjeture that early elimination of an unsound

proof leads to a major redution of the size of the searh spae outweighing the

ost of frequent soundness heking, espeially after our optimisations.

11

It is known that the set of sequents provable with the use of non-anestral

bak-links is equal to that with bak-linking restrited to anestor nodes [4℄.

This raises the question whether using only anestral bak-links improves per-

formane, due to a smaller number of alls to mathing funtions and soundness

heks. Restriting bak-links to anestral nodes does not speed up the instantia-

tions we provide, but makes some proofs impratial. It seems that the mathing

funtions we use will not �re signi�antly more often when allowed aess to non-

anestral nodes, and thus will not lead to exessive soundness heking.

4.4 Order of rule appliations. As in most theorem provers, the order in

whih inferene rules/tatis are attempted diretly impats performane. We

list here two points spei� to yli theorem proving. First, when mathing

funtions are omputationally heap, they an be prioritised and attempted early

and often, eagerly reating bak-links. Used within tatis suh as fold-then-

math, they an entail a higher omputational ost and are thus plaed last in

the priority order. Seond, unfolding rules generally inrease the size of sequents,

thus have lower priority than other inferene rules. In partiular, left-unfolding

preedes right-unfolding as it introdues progressing trae pairs in the yli

proof, and, it may (after simpli�ation) enable right-unfolding rules to �re.

4.5 Prediate folding/lemma appliation. It seems ertain that Cut elim-

ination does not hold, in general, for yli proof systems. Thus the ability to

onjeture and apply lemmas an be ruial to a suessful proof, as is the ase,

e.g., in our Example 6 above. Our instantiations of Cylist do not yet permit

the appliation of arbitrary lemmas. Instead, we urrently permit only prediate

foldings, where the lemma applied is essentially an indutive rule. For exam-

ple, the indutive rule Add(x, y, z) ⇒ Add(sx, y, sx) from Example 1 beomes

the �folding� lemma Add(x, y, z) ⊢ Add(sx, y, sx). We found empirially that

this very limited form of lemma appliation is very useful in quite a number of

proofs.

4.6 Limitations. Cylist is a young framework aimed at proving theorems

with a omplex indutive struture. As suh, it does not yet utilise the totality

of existing know-how on theorem proving, and this entails some limitations.

Foussing on indutive prediates means that funtion delaration and re-

lated equational reasoning failities are laking. As a result CylistFO has di�-

ulty dealing with heavily-equational goals, sine suh goals have to be translated

into a prediate-based language resulting in loss of strutural information.

Another limitation is that, although we do provide a prediate folding faility

as explained above, we have no funtionality urrently for applying general lem-

mas, and this restrits the ability of Cylist instantiations to prove theorems

that must rely on the use of Cut in their proofs.

A well-known example that is unprovable as yet in CylistFO and demon-

strates both limitations is the ommutativity of addition. In CylistFO this goal

an be expressed relationally as Nx,Ny,Add(x, y, z) ⊢ Add(y, x, z). This form
disourages the use of rewriting tehniques guided by the struture of terms. In

addition, the yli proof of the theorem requires essentially the same lemma,

12

x+sy = s(x+y), as is needed for the standard indutive proof (relationally, this

lemma an be stated as Nx,Ny,Add(x, y, z) ⊢ Add(x, sy, sz)). In standard in-

dutive theorem provers, this lemma would be supplied as a �hint� to the prover,

or would be found by an appropriate onjeture mehanism (f. [16℄).

4.7 Experimental results. The results of tests run on the three instantiations

of Cylist are summarised in Table 4. All tests were run on a x64 Linux system

with an Intel i5 3.33GHz. Cylist and all tests are available online at [1℄.

CylistFO.We ran a number of tests with the �rst-order prover, mainly involv-

ing natural number indution. The two most interesting theorems we managed

to prove are �the P & Q example� [24℄, and the sequent appearing in Example 6.

Both proofs have a omplex indutive struture, multiple yles and require the

use of prediate folding. They are both found in under a seond. It is notable

that Example 6 uses a lemma (Nx ⊢ Nssx) that is not an instane of folding (it

represents a �double fold�). CylistFO proves this theorem by �nding a deeper

proof that requires only single folds.

Cylist

SL

. The prover was run on the test ases from [8℄. Proving time is

nearly zero for most, suggesting that Cylist

SL

ould be used as a bakend for

program analysis that automatially handles arbitrary indutive datatypes.

Cylist

Term

. We ran the termination heker on a number of small programs

inluding the programs in [7℄. Notable are an iterative binary-tree searh (pro-

gram B in Table 4) and the reversal of a frying-pan list (program C, last theorem

in Table 4). The authors of [3℄ report that theMutant tool for separation logi,

whih deals only with lists, fails to prove the latter theorem (under an appro-

priate preondition). A yli termination proof was later presented in [7℄ where

it was painstakingly onstruted by hand. Cylist

Term

proves this in under a

seond. Its proof ontains �ve yles, all requiring prediate folding.

5 Related work

There are a few theorem provers employing yli proof in some form. The

QuodLibet tool [2℄, based on �rst-order logi with indutive datatypes, uses a

version of in�nite desent to prove indutive theorems whereby a proof node is

annotated with a weight, whih must stritly derease at bak-link sites. Com-

pared to Cylist, whih is fully automati, QuodLibet is intended for semi-

interative proof. An automated yli prover for entailments of separation logi,

implemented in HOL Light, appeared in [8℄. Compared to Cylist

SL

, the prover

in [8℄ disallows non-anestral bak-links and uses a restrited soundness ondi-

tion, whih in partiular rules out the use of prediate folding. Nguyen and

Chin [19℄ provide a separation logi entailment prover using yli proof, but

whih appears to be restrited in at least as many ways as [8℄.

In summary, the main restritions on previous yli provers are: (a) a sin-

gle logial setting; (b) anestral yle shemes; () strong soundness onditions

that rule out many proofs; and (d) automated searh limited to ut-free proofs.

Cylist lifts all of these restritions, albeit only partially in the ase of (d).

13

Theorem Time SC% Depth Nodes Uns./All

O1x ⊢ Nx 16 0 5 7 0/1

E1x ∨O2x ⊢ Nx 20 0 6 15 4/6

E1x ∨O1x ⊢ Nx 16 25 4 9 2/4

N1x ⊢ Ox ∨ Ex 12 0 4 6 0/1

N1x ∧ N2y ⊢ Q(x, y) 512 31 7 13 171/181

N1x ⊢ Add(x, 0, x) 4 0 3 5 0/1

N1x ∧ N2y ∧ Add3(x, y, z) ⊢ Nz 24 0 4 6 3/4

N1x ∧ N2y ∧ Add3(x, y, z) ⊢ Add(x, s(y), s(z)) 40 20 5 12 8/9

N1x ∧ N2y ⊢ R(x, y) 560 44 7 26 176/183

x 7→ y ∗ RList1(y, z) ⊢ RList(x, z) 16 0 5 8 0/1

RList1(x, y) ∗ RList2(y, z) ⊢ RList(x, z) 16 0 4 7 0/1

List1(x, y) ∗ y 7→ z ⊢ List(x, z) 8 0 4 6 0/1

List1(x, y) ∗ List2(y, z) ⊢ List(x, z) 8 0 3 5 0/1

PeList1(x, y) ∗ y 7→ z ⊢ PeList(x, z) 12 0 4 6 0/1

PeList1(x, y) ∗ PeList2(y, z) ⊢ PeList(x, z) 12 0 3 4 0/1

DLL1(x, y, z, w) ⊢ SLL(x, y) 12 0 3 5 0/1

DLL1(x, y, z, w) ⊢ BSLL(z, w) 12 0 4 6 0/1

DLL1(x, y, z, w) ∗ DLL2(a, x, w, b) ⊢ DLL(a, y, z, b) 8 0 3 4 0/1

ListO1(x, y) ∗ ListO2(y, z) ⊢ ListE(x, z) 12 0 5 12 0/1

ListE1(x, y) ∗ ListE2(y, z) ⊢ ListE(x, z) 20 0 5 8 0/1

ListE1(x, y) ∗ ListO2(y, z) ⊢ ListO(x, z) 24 0 5 8 0/1

BinListFirst1x ⊢ BinTreex 8 0 4 6 0/1

BinListSecond1x ⊢ BinTreex 20 0 4 6 0/1

BinPath1(x, z) ∗ BinPath2(z, y) ⊢ BinPath(x, y) 24 0 3 6 0/2

BinPath1(x, y) ⊢ BinTreeSeg(x, y) 16 0 4 8 0/2

BinTreeSeg
1
(x, z) ∗ BinTreeSeg

2
(z, y) ⊢ BinTreeSeg(x, y) 12 0 3 6 0/2

BinTreeSeg
1
(x, y) ∗ BinTreey ⊢ BinTree(x) 12 0 3 6 0/2

x 6= z ∗ x 7→ y ∗ ls1(y, z) ⊢ ls(x, z) 0 0 2 2 0/0

ls1(x, y) ∗ ls2(y, nil) ⊢ ls(x, nil) 16 0 3 4 0/1

ListE1(x, y) ∨ ListO1(x, y) ⊢ List(x, y) 16 0 4 9 2/4

A: ls1(x, nil) ⊢0↓ 16 0 5 7 0/1

B: btx ⊢0↓ 12 0 6 13 0/2

C: ls1(x, nil) ∗ ls2(y, nil) ⊢1↓ 52 8 8 10 13/14

D: y 6= nil ∗ ls1(x, nil) ∗ ls2(y, nil) ⊢0↓ 2036 16 12 24 197/233

C:

ls(x, z) ∗ ls(y, nil) ∗ z 7→ a ∗ ls(a, z)
∨ ls(b, nil) ∗ z 7→ b ∗ ls(x, z) ∗ ls(y, z)
∨ ls(x, nil) ∗ ls(y, z) ∗ z 7→ c ∗ ls(c, z) ⊢1↓ 124 0 9 39 19/23

A B C D

// List traversal

0: if x=nil goto 3;

1: x := x→next;

2: goto 0;

3: stop

// Bin. tree searh

0: if x=nil goto 6;

1: if * goto 4;

2: x := x→left ;

3: goto 0 ;

4: x := x→right ;

5: goto 0 ;

6: stop

// List reversal

0: y := nil;

1: if x=nil goto 7;

2: z := x;

3: x := x→next;

4: z→next := y;

5: y := z;

6: goto 1;

7: stop

// List append

// (one-at-a-time)

0: if x=nil goto 10;

1: z := y→next;

2: if z 6=nil goto 8;

3: y→next := x;

4: x := x→next;

5: y := y→next;

6: y→next := nil;

7: goto 0;

8: y := y→next;

9: goto 0;

10: stop

Table 1. Upper: Theorems proved by the instantiations. The olumn labelled `Time' is

the time taken in milliseonds, `SC%' is the perentage of time taken by the soundness

heks, `Depth' is the depth of the proof found, `Nodes' is the number of nodes in the

proof and the last olumn shows the number of alls to the model heker as (alls on

unsound proof)/(total alls). Lower: The input programs to the termination prover.

NB the formulas used for program C are loop invariants and as suh the program

ounter in the judgment is set to 1, i.e., a statement in the loop.

14

The �size hange priniple� for program termination by Lee et al [18℄ is based

on a ondition similar to the soundness ondition for yli proofs: a program

terminates if every possible in�nite exeution in the ontrol �ow graph would

result in an in�nite desent of some well-founded data value. It is plausible that

the approah of [18℄ to termination heking, empirially shown to often be

more e�ient in pratie than a Bühi automata onstrution [14℄, would also

bene�t the soundness heking in Cylist. However, in ontrast to size-hange

termination problems, the main problem we fae is not in heking the soundness

ondition, but in disovering the orret andidate pre-proofs.

Finally, there are a number of mature, automated theorem provers employ-

ing expliit indution, inluding ACL2 [17℄, IsaPlanner [12℄, LambdaOtter and

many others. Unfortunately, most test suites for these provers are largely based

on equational reasoning about funtions over indutive datatypes, whereas our

instantiations of Cylist urrently only ater for indutively de�ned prediates,

making a diret omparison di�ult. These tools will most probably outperform

ours on problems requiring extensive rewriting, generalisation or the appliation

of non-trivial lemmas. On the other hand, Cylist performs well on small prob-

lems requiring omplex indution shemes, whih are typially problemati for

expliit indution (f. Example 6). Thus we believe that integrating the sophis-

tiated non-indutive features of expliit-indution provers into Cylist might

yield signi�ant bene�ts. For example, onjeturing appropriate lemmas (f. [16℄)

seems extremely useful in forming bak-links during proof searh.

6 Conlusions and future work

The main ontributions of this paper are our generi theory of yli proof,

its unrestrited implementation in our theorem prover Cylist, and the appli-

ation of Cylist to three onrete logial systems, inluding automated proof

searh proedures. In partiular, we provide the �rst implementation of the yli

proof system for program termination proposed in [7℄. We believe that Cylist

represents the �rst fully general implementation of yli proof.

Although Cylist is by no means an industrial-strength theorem prover, the

results of our experiments to date are nevertheless enouraging. In its various

instantiations, the prover is apable of automatially proving theorems with a

omplex indutive struture, notable Wirth's �P&Q� example, the proof of in-

plae reversal of a �frying-pan� list from [7℄, and our own Example 6.

There are obvious diretions in whih Cylist ould be improved, both

at the generi level (e.g. funtion de�nition over datatypes, rewriting support,

lemma appliation and generalisation mehanisms) and in its various instantia-

tions (e.g. more advaned searh strategies for partiular logis). There is also

the potential for developing new instantiations of Cylist to other �xed-point

logis, suh as the µ-alulus or temporal logis. We warmly enourage the de-

velopment of suh instantiations by interested readers.

15

Referenes

1. Cylist framework download. http://www.s.ul.a.uk/staff/ngorogia/

2. Avenhaus, J., Kühler, U., Shmidt-Samoa, T., Wirth, C.P.: How to prove indutive

theorems? QuodLibet! In: CADE-19. LNAI 2741, pp. 328�333. Springer (2003)

3. Berdine, J., Cook, B., Distefano, D., O'Hearn, P.W.: Automati termination proofs

for programs with shape-shifting heaps. In: CAV-18. LNCS 4144, pp. 386�400.

Springer (2006)

4. Brotherston, J.: Cyli proofs for �rst-order logi with indutive de�nitions. In:

TABLEAUX-14. LNAI 3702, pp. 78�92. Springer-Verlag (2005)

5. Brotherston, J.: Sequent Calulus Proof Systems for Indutive De�nitions. Ph.D.

thesis, University of Edinburgh (November 2006)

6. Brotherston, J.: Formalised indutive reasoning in the logi of bunhed implia-

tions. In: SAS-14. LNCS, vol. 4634, pp. 87�103. Springer-Verlag (2007)

7. Brotherston, J., Bornat, R., Calagno, C.: Cyli proofs of program termination in

separation logi. In: POPL-35, pp. 101�112. ACM (2008)

8. Brotherston, J., Distefano, D., Petersen, R.L.: Automated yli entailment proofs

in separation logi. In: CADE-23. LNAI 6803, pp. 131�146. Springer (2011)

9. Brotherston, J., Simpson, A.: Sequent aluli for indution and in�nite desent.

Journal of Logi and Computation 21(6), pp. 1177�1216, (De 2011).

10. Bundy, A.: The automation of proof by mathematial indution. In: Handbook of

Automated Reasoning, vol. I, hap. 13, pp. 845�911. Elsevier Siene (2001)

11. Couvreur, J.M.: On-the-�y veri�ation of linear temporal logi. In: FM. pp. 253�

271. Springer-Verlag (1999)

12. Dixon, L., Fleuriot, J.: IsaPlanner: A prototype proof planner in Isabelle. In:

CADE'03. pp. 279�283 (2003)

13. Duret-Lutz, A., Poitrenaud, D.: Spot: An extensible model heking library using

transition-based generalized Bühi automata. In: MASCOTS. pp. 76�83. (2004)

14. Fogarty, S., Vardi, M.: Bühi omplementation and size-hange termination. In:

TACAS-15. LNCS 5505, pp. 16�30 (2009)

15. Friedgut, E., Kupferman, O., Vardi, M.Y.: Bühi omplementation made tighter.

In: 2nd Int. Symp. on Automated Tehnology for Veri�ation and Analysis (2004)

16. Johansson, M., Dixon, L., Bundy, A.: Conjeture synthesis for indutive theories.

Journal of Automated Reasoning 47(3) (Ot 2011)

17. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-

proah. Kluwer (2000)

18. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-hange priniple for program

termination. In: POPL-28, pp. 81�92. ACM (2001)

19. Nguyen, H.H., Chin, W.N.: Enhaning program veri�ation with lemmas. In: CAV-

20. LNCS 5123, pp. 355�369. Springer (2008)

20. Shöpp, U., Simpson, A.: Verifying temporal properties using expliit approxi-

mants: Completeness for ontext-free proesses. In: FOSSACS-5. LNCS 2303, pp.

372�386. Springer (2002)

21. Sprenger, C., Dam, M.: A note on global indution mehanisms in a µ-alulus with
expliit approximations. Theor. Informatis and Appliations 37, 365�399 (2003)

22. Sprenger, C., Dam, M.: On the struture of indutive reasoning: irular and tree-

shaped proofs in the µ-alulus. In: FOSSACS-6. LNCS 2620, pp. 425�440. Springer
(2003)

23. Stirling, C., Walker, D.: Loal model heking in the modal µ-alulus. Theoretial
Computer Siene 89, 161�177 (1991)

24. Wirth, C.P.: Desente in�nie + Dedution. Logi J. of the IGPL 12(1), 1�96 (2004)

16

