
A Generi
 Cy
li
 Theorem Prover

James Brotherston

1
, Nikos Gorogiannis

1
, and Rasmus L. Petersen

2

1
Dept. of Computer S
ien
e, University College London

2
Mi
rosoft Resear
h Cambridge

Abstra
t. We des
ribe the design and implementation of an automated

theorem prover realising a fully general notion of
y
li
 proof. Our tool,

alled Cy
list, is able to
onstru
t proofs obeying a very general
y
le

s
heme in whi
h leaves may be linked to any other mat
hing node in the

proof, and to verify the general, global in�nitary
ondition on su
h proof

obje
ts ensuring their soundness. Cy
list is based on a new, generi

theory of
y
li
 proofs that
an be instantiated to a wide variety of log-

i
s. We have developed three su
h
on
rete instantiations, based on: (a)

�rst-order logi
 with indu
tive de�nitions; (b) entailments of pure separa-

tion logi
; and (
) Hoare-style termination proofs for pointer programs.

Experiments run on these instantiations indi
ate that Cy
list o�ers

signi�
ant potential as a future platform for indu
tive theorem proving.

1 Introdu
tion

In program analysis, indu
tive de�nitions are essential for spe
ifying the shape of

omplex data stru
tures held in memory. Thus automated reasoning about su
h

de�nitions, a.k.a. indu
tive theorem proving, is a key a
tivity supporting program

veri�
ation. Unfortunately, the expli
it indu
tion rules employed in standard

indu
tive proofs pose
onsiderable problems for proof sear
h [10℄. Cy
li
 proof

has been re
ently proposed as an alternative to traditional proof by expli
it

indu
tion for �xed point logi
s. In
ontrast to standard proofs, whi
h are simply

derivation trees, a
y
li
 proof is a derivation tree with �ba
k-links� (see Figure 1),

subje
t to a global soundness
ondition ensuring that the proof
an be read as

a proof by in�nite des
ent à la Fermat [5℄. This allows expli
it indu
tion rules

to be dropped in favour of simple unfolding or �
ase split� rules.

Cy
li
 proof systems seem to have �rst arisen in
omputer s
ien
e as tableaux

for the propositional modal µ-
al
ulus [23℄. Sin
e then,
y
li
 proof systems have

been proposed for a number of appli
ations, in
luding: �rst-order µ-
al
ulus [22℄;

verifying properties of
on
urrent pro
esses [20℄; �rst-order logi
 with indu
tive

de�nitions [4, 9℄, bun
hed logi
 [6℄; and termination of pointer programs [7℄.

However, despite the fairly ri
h variety of formal
y
li
 proof systems, automated

tools implementing these formal systems remain very thin on the ground.

In this paper we des
ribe the design and implementation of a new
y
li

theorem prover,
alled Cy
list, based on a generi
 theory of
y
li
 proofs and

instantiable to a wide variety of logi
al systems. We have implemented three

on
rete instantiations of Cy
list: (a) a system for a fragment of �rst-order

1

•

• • · · · •
(Inferen
e)

•

(Axiom)

•

(Axiom)

•

(Axiom)

•

•

• • · · · •
(Inferen
e)

•

(Axiom)

•

•

•

Fig. 1. Left: a typi
al proof stru
tured as a �nite tree, with the parent-
hild relation

between nodes (•) given by a set of inferen
e rules. Right: a typi
al
y
li
 pre-proof,

stru
tured as a tree proof with �ba
k-links� between nodes (shown as arrows).

logi
 with indu
tive de�nitions, based on the formal system in [4℄; (b) a system

for entailment in separation logi
, extending the one in [8℄; and (
) a Hoare-style

system for termination of pointer programs using separation logi
, based on [7℄.

In Se
tion 2, we give our general
y
li
 proof framework and, in parallel,

dis
uss our implementation of Cy
list using its instantiation (a) to �rst-order

logi
 as a running example.

As above,
y
li
 proofs
an be generally
hara
terised as derivation trees with

ba
k-links (�pre-proofs�) obeying a global, in�nitary soundness
ondition quali-

fying them as bona �de
y
li
 proofs. The soundness
ondition states that every

in�nite path in the pre-proof must possess a synta
ti
 tra
e that �progresses�

in�nitely often; informally, a tra
e
an be thought of as a well-founded measure

and its progress points to stri
t de
reases in this measure. Our generi
 theory

formalises this
hara
terisation of
y
li
 proofs, whi
h is entirely independent of

the
hoi
e of any parti
ular logi
al formalism.

There are two main te
hni
al obsta
les to implementation of
y
li
 proof,

both stemming from the stru
tural
omplexity of
y
li
 proofs
ompared to stan-

dard proofs. First, the prover must be able to form ba
k-links in the derivation

tree. This inevitably leads to a global view of proofs, rather than one lo
alised

to the
urrent subgoal as in most theorem provers. Se
ond, the prover must be

able to
he
k whether or not a given pre-proof satis�es the general soundness

ondition. Our approa
h to both di�
ulties is des
ribed in Se
tion 2.

Se
tion 3 brie�y des
ribes our instantiations (b) and (
) of Cy
list to sep-

aration logi
 frameworks. Then, in Se
tion 4, we examine some of the issues

pertaining to automated proof sear
h in Cy
list, and report on our experimen-

tal evaluation of the prover's performan
e in all three instantiations. Parti
ular

issues for
y
li
 proof sear
h in
lude looking for potential ba
k-links in the proof,

and de
iding when to invoke the (potentially expensive) soundness
he
k. Other

issues, su
h as the priority ordering of rules and the
onje
ture / appli
ation of

appropriate lemmas during a proof, are features of indu
tive theorem proving

in general. Finally, Se
tion 5
ompares our
ontribution with related work, and

Se
tion 6 outlines dire
tions for future work.

The theoreti
al framework on
y
li
 proofs in Se
tion 2 is based on its earlier

presentation in the �rst author's PhD thesis [5℄.

2

2 Cy
li
 proofs and the Cy
list prover

In this se
tion we develop a general notion of a
y
li
 proof system, whi
h gener-

alises the
on
rete formal systems given in, e.g., [4, 6�8, 20�23℄. In an interleaved

fashion we also des
ribe Cy
list, a me
hanised theorem proving framework for

y
li
 proof. We use its instantiation Cy
listFO to �rst-order logi
 with indu
-

tive predi
ates as a running example to illustrate our ideas and design
hoi
es.

However, most of the issues we dis
uss here are relevant to any logi
al instan-

tiation of the prover, and in parti
ular to the two other instantiations we have

also implemented: pure entailment in separation logi
 (
f. [8℄) and termination of

pointer programs based on separation logi
 (
f. [7℄). In order to avoid overwhelm-

ing the reader with te
hni
al details, we intentionally elide some �ner points of

our implementation to begin with, and introdu
e these gradually as we go along.

2.1 Implementation platform. The
ore of Cy
list is an OCaml fun
tor

parameterised over a user-de�ned datatype that des
ribes the desired logi
 and

its basi
 rules of inferen
e. The fun
tor provides fun
tions for proof sear
h and

basi
 manipulation of
y
li
 proofs. Cy
list also provides an OCaml interfa
e

to a
ustom model
he
ker in C++ that
he
ks the soundness of
y
li
 proofs.

In
ontrast to e.g. [8℄, we de
ided against implementing Cy
list inside a

theorem prover su
h as Isabelle or HOL Light. This is be
ause the stru
tural

ma
hinery of
y
li
 proof
annot be straightforwardly represented inside a tool

employing a standard, tree-like internal notion of proof. Consequently, as in [8℄, a

deep embedding of
y
li
 proof systems would be ne
essary, whereby
y
li
 proofs

are represented as expli
it datatypes, and reasoned about using fun
tions de�ned

over those datatypes. In addition to its te
hni
al di�
ulty, this approa
h negates

most of the advantages of using a trusted theorem prover, as
orre
tness depends

fundamentally on the (unproven)
orre
tness of the deep embedding as well as

the
orre
tness of the external soundness
he
ker. Thus we gain implementation

e�
ien
y at relatively little expense of
on�den
e by working dire
tly in OCaml.

2.2 Sequents and inferen
e rules. First, we assume a set S of obje
ts,

orresponding to the `•'s in Figure 1 and
alled sequents, from whi
h our proofs

will be built. Next we assume a set R of proof rules whi
h are ea
h of the form:

S1 . . . Sn
(R)

S

where n ≥ 0 and S, S1, . . . , Sn are sequents. S is
alled the
on
lusion of rule

(R) and S1, . . . , Sn its premises ; a rule with no premises is
alled an axiom.

(Stri
tly speaking, the rules are usually understood as rule s
hemata, where

parts of sequents may a
t as parameters.) A derivation tree is then, as usual, a

tree ea
h of whose nodes v is labelled with a sequent S(v), and the rule R(v) of
whi
h it is the
on
lusion, in su
h a way as to respe
t the proof rules.

Cy
list expe
ts a user-de�ned type for sequents, and for inferen
e rules,

ea
h of whi
h redu
es a given
on
lusion sequent to a list of premises. However,

be
ause rules are really rule s
hemata, a rule may have multiple di�erent appli-

ations to a sequent. To support this, rules in Cy
list return a list of lists of

3

premises,
orresponding to the results of all possible appli
ations of the rule to

the sequent. In parti
ular, axioms always return a list of empty lists of premises.

In Cy
listFO, we de�ne a type for negation-free ∀∃-sequents in disjun
-

tive normal form, built from �rst-order formulas with equality and disequality,

fun
tion terms and indu
tively de�ned predi
ates. It is straightforward to de�ne

standard rules and axioms for handling equalities,
ontradi
tion, simpli�
ation,

quanti�ers and
onjun
tion / disjun
tion.

2.3 Indu
tive predi
ates and unfolding rules. Indu
tive predi
ates are

spe
i�ed by a set of indu
tive rules ea
h of the form F ⇒ P t, where P is an

indu
tive predi
ate, t is a tuple of appropriately many terms and F is a formula

(subje
t to
ertain restri
tions to ensure monotoni
ity of the de�nitions).

Example 1. We
an de�ne a �natural number� predi
ate N , mutually de�ned

�even / odd� predi
ates E and O, and a ternary �addition� predi
ate Add (where

Add(x, y, z) should be read as �x+ y = z�) via the following indu
tive rules:

⇒ N0 ⇒ E0 Ny ⇒ Add(0, y, y)
Nx ⇒ Nsx Ox ⇒ Esx Add(x, y, z) ⇒ Add(sx, y, sz)

Ex ⇒ Osx

where 0 is a
onstant symbol and s is a unary fun
tion symbol, understood as

the usual zero and �su

essor� fun
tion in Peano arithmeti
 respe
tively. ⊓⊔

Given a set of indu
tive rules, Cy
listFO generates rules for unfolding indu
tive

predi
ates on the right and left of sequents. As usual, the right-unfolding rules

for a predi
ate P are just sequent versions of the indu
tive rules introdu
ing P .

Example 2. Applying the right-unfolding rule
orresponding to Nx ⇒ Nsx from

Example 1 to the
on
lusion sequent F ⊢ Nsy,Nssz3 yields:
[

[F ⊢ Ny,Nssz] ; [F ⊢ Nsy,Nsz]
]

(RN)
F ⊢ Nsy,Nssz

Note the bra
keting indi
ating the two possible appli
ations of this rule (we use

`;' to separate list items), ea
h resulting in a single premise sequent. ⊓⊔

The left-unfolding rule for an indu
tive predi
ate
an be seen as a
ase distin
tion

prin
iple that repla
es an indu
tive predi
ate in the left of a
on
lusion sequent

with a premise for every
lause of its de�nition.

Example 3. Applying the left-unfolding rule for the predi
ate E given in Exam-

ple 1 to the
on
lusion sequent Ey ⊢ G yields the following:

[

[y = 0 ⊢ G ; y = sz,Oz ⊢ G]
]

(LE)
Ey ⊢ G

where z is a fresh variable. Observe that, in this
ase, there is only one possible

appli
ation of the rule whi
h results in two premises. ⊓⊔

3

As usual in sequent
al
uli,
omma
orresponds to ∧ in the LHS and ∨ in the RHS.

4

2.4 Cy
li
 proofs and the forming of ba
k-links. We �rst de�ne
y
li

pre-proofs below. Here, a leaf of a derivation tree is
alled open if it is not the

on
lusion of an axiom, i.e. if R(v) is unde�ned.

De�nition 1 (Pre-proof). A pre-proof of a sequent S is a pair (D,L), whereD
is a �nite derivation tree whose root is labelled by S, and L is a ba
k-link fun
tion

assigning to every open leaf ℓ of D a node L(ℓ) of D su
h that S(L(ℓ)) = S(ℓ).
Any pre-proof P = (D,L)
an be understood as a graph by identifying ea
h

open leaf ℓ of D with L(ℓ). A path in P is an in�nite sequen
e vi of nodes of P
su
h that for every i, either (yi, yi+1) is an edge in D, or L(vi) = vi+1.

A

ording to De�nition 1, a ba
k-link in a
y
li
 pre-proof is formed by

assigning to a leaf ℓ in the derivation tree another node L(ℓ) su
h that S(ℓ) =
S(L(ℓ)). Cy
list relaxes this stri
t requirement slightly and permits ba
k-links

between a leaf node S1 and any other node S2 su
h that a user-de�ned mat
hing

fun
tion returns true, given S1, S2 as arguments.

4

In Cy
listFO, we use the following mat
hing fun
tion: S1 mat
hes S2 if S1

is derivable from S2 using only weakening and substitution prin
iples.

Example 4. In Cy
listFO, the sequent S1 below mat
hes S2 be
ause there is a

derivation of S1 from S2 using weakening and substitution prin
iples, as follows:

S2 : Oy ⊢ Ny
(Subst)

Osz ⊢ Nsz
(Weak)

S1 : Osz,Essz, Ez ⊢ Nsz,Ny

Thus a leaf labelled by S1
an be ba
k-linked to any node labelled by S2. ⊓⊔

2.5 De�ning the tra
e pair fun
tion. To qualify as a bona �de proof, a

y
li
 pre-proof must satisfy a global soundness
ondition, de�ned using the

notion of a tra
e along a path in a pre-proof.

De�nition 2 (Tra
e). Let T be a set of tra
e values. A tra
e pair fun
tion is a

fun
tion δ : (S×R×S) → Pow((T ×T ×{0, 1})) (where Pow(−) is powerset) su
h
that for any S, S′ ∈ S and R ∈ R, the set δ(S,R, S′) is �nite (and
omputable).

If (α, α′, n) ∈ δ(S,R, S′) for some n ∈ {0, 1} then (α, α′) is said to be a tra
e

pair for (S,R, S′), and if n = 1 then (α, α′) is said to be a progressing tra
e pair.

Now let π = (vi)i≥0 be a path in a pre-proof P . A tra
e following π is a

sequen
e τ = (αi)i≥0 su
h that, for all i ≥ 0, (αi, αi+1) is a tra
e pair for

(S(vi), R(vi), S(vi+1)). If in�nitely many of these (αi, αi+1) are progressing tra
e
pairs, then τ is said to be in�nitely progressing.

Sin
e we are only interested in tra
es following paths in a pre-proof, we may

assume for simpli
ity that the domain of a tra
e pair fun
tion δ, written dom(δ),

4

One
ould also simply in
lude a rule allowing one to
on
lude S1 from S2 whenever

S1 mat
hes S2, but our treatment is typi
ally more
onvenient for proof sear
h.

5

is restri
ted to triples (S,R, S′) su
h that S is the
on
lusion of an instan
e of

the rule R and S′
is one of the premises of that instan
e. Given su
h a δ, the

tuple (S,R, T , δ) is then
alled a
y
li
 proof system.

In order to fa
ilitate
he
king the global soundness
ondition, Cy
list re-

quires pre-proofs to
arry information about tra
e pairs. A

ording to Defn. 2,

a tra
e pair fun
tion δ takes as input a sequent S, the rule R applied to it

and one of the premises S′
obtained as a result, and returns the sets of asso
i-

ated progressing and non-progressing tra
e pairs. Intuitively, a progressing tra
e

pair identi�es a measure that be
omes stri
tly smaller when moving from S to

S′
under the appli
ation of R, while a non-progressing tra
e pair identi�es a

measure that at least does not in
rease. (Defn. 5 below will make pre
ise the

orresponden
e between tra
e pairs and measures.)

In Cy
listFO, we adopt the notion of tra
e from [4, 5℄. There, tra
e values

are atomi
 formulas of the form P t o

urring on the left of sequents, where P is

an indu
tive predi
ate. Then (P t, Qt
′) is a progressing tra
e pair on (S,R, S′)

if R is a left-unfolding rule, P t is the formula in S being unfolded and Qt
′
is

obtained in S′
by unfolding P t. (P t, Qt

′) is a non-progressing tra
e pair if P t

and Qt
′
o

ur on the left of S and S′

respe
tively and P t ≡ Qt
′
, where the

equivalen
e is equality modulo any substitution applied by the rule R.

To implement this notion in Cy
listFO, ea
h atomi
 formula P t in the left

of a sequent is annotated with a natural number,
alled its tag. Then for any

on
lusion sequent S and rule R we use these tags to atta
h to ea
h premise S′

the lists of progressing and non-progressing tra
e pairs asso
iated with (S,R, S′).
Similarly, mat
hing fun
tions are also required to return lists of (usually non-

progressing) tra
e pairs for mat
hing sequents.

Example 5. The following example shows how the premises of an instan
e of

(LE) are extended with lists of progressing and non-progressing tra
e pairs (in

that order), where the numeri
 subs
ripts on atomi
 formulas are tags:

[

[(N1x, y = 0 ⊢ G, [], [(1, 1)]) ; (N1x, y = sz,O3z ⊢ G, [(2, 3)], [(1, 1)])]
]

(LE)
N1x,E2y ⊢ G

Thus, in the right hand premise, the �rst list indi
ates that (2, 3), denoting
the formulas E2y in the
on
lusion and O3y in the premise, is a progressing

tra
e pair, and the se
ond list indi
ates that (1, 1), denoting the formulas N1x

o

urring in both
on
lusion and premise, is a non-progressing tra
e pair. The

left hand premise is similar, ex
ept that there are no progressing tra
e pairs. ⊓⊔

2.6 Soundness of
y
li
 proofs and de
ision pro
edures. It is
lear that

a pre-proof may not be sound, e.g., a sequent ba
k-linked to itself. The following

de�nition
aptures a su�
ient
ondition of soundness.

De�nition 3 (Cy
li
 proof). A pre-proof P in a
y
li
 proof system is said

to be a (
y
li
) proof if, for every in�nite path (vi)i≥0 in P , there is a tail of the
path, π = (vi)i≥n, su
h that there is an in�nitely progressing tra
e following π.

6

Our tra
e-based
ondition qualifying pre-proofs as proofs follows the one by

Sprenger and Dam [21℄, who showed that their tra
e
ondition for the �rst-order

µ-
al
ulus subsumed a number of previous formulations by others. Analogous

tra
e
onditions were adopted for other logi
s in [4, 6, 7℄. Sprenger and Dam also

established that their tra
e
ondition was de
idable, a result we extend to the

generi
 notion of tra
e given by Defn. 2.

Theorem 4 (De
idability of soundness
ondition). In any
y
li
 proof

system (S,R, T , δ) it is de
idable whether or not a pre-proof is a
y
li
 proof.

Proof. (Sket
h) From a given pre-proof P we
onstru
t two Bü
hi automata

over strings of nodes of P . The path automaton APath simply a

epts all in�nite

paths in P . The tra
e automaton ATrace a

epts all in�nite paths in P su
h

that an in�nitely progressing tra
e exists on some tail of the path. P is then a

proof if and only if ATrace a

epts all strings a

epted by APath. We are then

done sin
e in
lusion between the languages of Bü
hi automata is known to be

de
idable. The full details appear as Appendix A of [5℄. ⊓⊔

Che
king that a pre-proof P satis�es the soundness
ondition on
y
li
 proofs

(Defn. 3) amounts to
he
king language in
lusion between two Bü
hi automata

APath and ATrace
onstru
ted from P (see the proof of Theorem 4). We imple-

ment this
he
k as a fun
tion that, given a Cy
list pre-proof,
onstru
ts the

two automata and then uses a model
he
ker to de
ide language in
lusion.

We use transition-labelled Bü
hi automata [11℄ in
onstru
ting APath and

ATrace, as they allow the most su

in
t representation. We represent su
h an

automaton as a dire
ted graph with labelled edges, where (u, v, l, n) with n ∈
{0, 1} des
ribes an edge from u to v a

epting the label l. The automaton a

epts

any in�nite string of labels su
h that edges with n = 1 are visited in�nitely often.

The path automaton APath a

epts all in�nite paths in P , and thus it has an

edge (u, v, v, 1) for every edge (u, v) of P (viewing P as a graph in the obvious

way). The tra
e automaton ATrace is more
ompli
ated, and built using both the

node identi�ers of P and the tra
e pair information atta
hed to rule instan
es

as des
ribed above. Essentially, ATrace a

epts any in�nite path through P that

eventually (a) is de
orated with tra
e values that agree with the tra
e pair

fun
tion and (b) goes through a progressing tra
e pair in�nitely often. Thus,

in parti
ular, ATrace
ontains an edge ((u, α1), (v, α2), v, n) whenever (u, v) is

an edge of P and (α1, α2) is a tra
e pair annotating the
orresponding rule

instan
e in P , with n = 1 if (α1, α2) is progressing and n = 0 otherwise. For full

details of the
onstru
tion, see Appendix A of [5℄.

Our model
he
ker is built using Spot [13℄, an open-sour
e C++ library for

building
ustom, on-the-�y model
he
kers. We also provide an OCaml interfa
e

between Cy
list and the model-
he
king C++
ode.

Che
king in
lusion between Bü
hi automata is
omputationally expensive,

as it entails
omplementing one of the automata, whi
h
an lead to an explosion

in the number of states [15℄. Thus readers may wonder whether the general

in�nitary soundness
ondition on
y
li
 proofs ought to be dis
arded in favour

7

of a stronger but simpler
ondition. The following (admittedly arti�
ial) example

is intended to show that a fairly
omplex proof
ondition is in fa
t needed.

Example 6. De�ne a binary predi
ate R via the following indu
tive rules:

⇒ R(0, y) R(x, 0) ⇒ R(sx, 0) R(ssx, y) ⇒ R(sx, sy)

The following is a
y
li
 proof of the sequent Nx,Ny ⊢ R(x, y), where N is the

natural number predi
ate de�ned in Example 1 (for brevity, we omit appli
ations

of equality rules,
ontra
tion and weakening):

(RR)

⊢ R(0, y)

(∗) Nx,Ny ⊢ R(x, y)
(Subst)

Nx′, N0 ⊢ R(x′, 0)
(RR)

Nx′, N0 ⊢ R(sx′, 0)

(∗) Nx,Ny ⊢ R(x, y)
(Subst)

Nssx′, Ny′ ⊢ R(ssx′, y′)
(Cut)

Nx′, Ny′ ⊢ R(ssx′, y′)
(RR)

Nx′, Ny′ ⊢ R(sx′, sy′)
(LN)

Nx′, Ny ⊢ R(sx′, y)
(LN)

(∗) Nx,Ny ⊢ R(x, y)

where we suppress the easy proof that Nx′ ⊢ Nssx′
in the instan
e of (Cut) on

the right hand bran
h. The leaves marked (∗) are both ba
k-linked to the root.

To see that this pre-proof is in fa
t a
y
li
 proof, we must show that any

in�nite path π has a tail on whi
h an in�nitely progressing tra
e exists. There

are two
ases to
onsider. First, if π has a tail
onsisting entirely of repetitions

of the left-hand loop, then we
an form a tra
e following this tail given by the

overlined formulas, whi
h progresses (in�nitely often) at the �rst appli
ation of

(LN). Otherwise, π must traverse the right-hand loop in�nitely often (and might

also traverse the left-hand loop in�nitely often). In that
ase, we
an form a tra
e

following π given by the underlined formulas, whi
h progresses (in�nitely often)

at the se
ond appli
ation of (LN). ⊓⊔

Cy
listFO is in fa
t
apable of proving the above example. We note that

the overlapping of
y
les in this example is essentially unavoidable, and that

we are for
ed to sele
t di�erent tra
es for the left-hand
y
le depending on the

order in whi
h these overlapping
y
les are traversed. Thus, the proof
ondition

annot be restated in this
ase as a simpler property to be satis�ed by ea
h
y
le

individually. However, this proof does satisfy Brotherston's
ondition of having

a �tra
e manifold�, whi
h is stated in terms of
onne
ted sets of
y
les [4, 5℄.

2.7 Soundness of
y
li
 proof systems. Although our implementation of

y
li
 proof naturally deals only with the synta
ti
 notion of provability given by

Defn. 3, we shall nevertheless outline here how soundness of a
y
li
 proof system

may be established. We assume a set I of interpretations of sequents, whi
h are

fun
tions from S into {true, false}; we write I |= S to mean I(S) = true. S is

alled valid if I |= S for all I ∈ I.

De�nition 5 (Ordinal tra
e fun
tion). An ordinal tra
e fun
tion for a
y
li

proof system (S,R, T , δ) and interpretations I is a fun
tion σ : (T × I) → O,

8

applyrule(rule,proof,node) :

begin

result := [℄;

appli
ations := rule(node);

forea
h subgoallist in appli
ations do

(proof',subgoalnodes) :=

repla
enode(proof, node, subgoallist, rule);

result := (proof',subgoalnodes) :: result;

end

return result;

end

ba
klink (mat
hfun,proof,node) :

begin

result := [℄;

forea
h node' in proof do

if mat
hfun node node' then

proof' := linknode(proof,node,node',mat
hfun);

if sound(proof') then result := (proof', [℄) :: result;

end

end

return result;

end

proofsear
h(bound,proof,node) :

begin

if
losed(node) then return proof;

if bound=0 then return nil;

forea
h rule in ruleset do

if rule is a mat
hing fun
tion then

results := ba
klink(rule, proof, node);

else

results := applyrule(rule, proof, node);

end

forea
h (proof', subgoalnodes) in results do

p' := proof';

forea
h node' in subgoalnodes do

p' := proofsear
h(bound-1,p',node');

if p'=nil then break;

end

if p'=nil then return nil else return p';

end

end

end

Fig. 2. Pseudo
ode for proof sear
h in Cy
list.

where O is an initial segment of the ordinals, satisfying the following
onditions

for all I ∈ I and S ∈ S:

if I 6|= S then ∃S′ ∈ S, R ∈ R, I ′ ∈ I.
I ′ 6|= S′

and (S,R, S′) ∈ dom(δ) and

if (α, α′, n) ∈ δ(S,R, S′) then

{

σ(α′, I ′) ≤ σ(α, I) if n = 0
σ(α′, I ′) < σ(α, I) if n = 1

We note that the existen
e of an ordinal tra
e fun
tion subsumes lo
al soundness

of the proof rules, be
ause of the requirement in De�nition 5 that falsi�ability

of the
on
lusion of a rule implies falsi�ability of one of its premises.

In the
ase of �rst-order logi
, it is well known that an indu
tive predi
ate

P
an be generated semanti
ally via a
hain of ordinal-indexed approximants

(P γ)γ≥0 . Here, given a suitable interpretation I the ordinal tra
e fun
tion

σ(P t, I) returns the smallest γ su
h that I |= P γ
t. See e.g. [5, 4, 9℄ for details.

Theorem 6 (Soundness). Suppose there exists an ordinal tra
e fun
tion for

(S,R, T , δ) and I. Then, if S has a
y
li
 proof, then S is valid.

Proof. (Sket
h) Let P be a
y
li
 proof of S, and suppose for
ontradi
tion

that I 6|= S. Using lo
al soundness of the rules, we
an
onstru
t an in�nite

path π = (vj)j≥0 in P and an in�nite sequen
e (Ij)j≥0 of interpretations su
h

that Ij 6|= S(vj) for all j ≥ 0. Sin
e P is a
y
li
 proof, there exists an in�nitely

progressing tra
e (αj)j≥n following some tail (vj)j≥n of π. It follows from De�ni-

tion 5 that the sequen
e (σ(αj , Ij))æ≥n is monotoni
ally de
reasing, and stri
tly

de
reases in�nitely often. This
ontradi
ts the well-foundedness of O. ⊓⊔

2.8 Proof sear
h. Provided with the appropriate des
riptions of sequents,

indu
tive de�nitions and inferen
e rules, Cy
list instantiates a proof sear
h

fun
tion, proofsear
h(), shown in pseudo-
ode in Figure 2. This fun
tion, given

9

a proof, a node within that proof and a maximum re
ursion depth, performs

an iterative depth-�rst sear
h aiming at
losing open nodes in the proof. The

global variable �ruleset� provides the ordered list of inferen
e rules and mat
hing

fun
tions de�ned by the user; the fun
tions repla
enode() and linknode() do

the requisite graph surgery in order to repla
e an open node in the proof with

either the appli
ation of an inferen
e rule or a ba
k-link, respe
tively. Finally,

the fun
tion sound()
he
ks the global soundness of a
y
li
 proof. The design

and trade-o�s regarding this algorithm will be further dis
ussed in Se
tion 4.

3 Separation logi
 instantiations of Cy
list

We brie�y present the two instantiations of Cy
list based on separation logi
.

3.1 Separation logi
 entailment prover. Cy
list

SL

is a prover for separa-

tion logi
 similar to the prover in [8℄. The syntax (left) and semanti
s (right) of

the ∀∃ DNF-like fragment of separation logi
 the prover a

epts appear below.

t ::= x | nil
α ::= t = t

| t 6= t
| emp

| t 7→ 〈t, . . . , t〉
| P (t, . . . , t)

H ::= α | H ∗H
F ::= H

| F ∨ F
| ∃x.F

s(nil) /∈ dom(h), for all s, h
s, h |= x = y i� s(x) = s(y)
s, h |= x 6= y i� s, h 6|= x = y
s, h |= emp i� h = ∅
s, h |= a0 7→ 〈a1, . . . , an〉 i� h = {s(a0) 7→ (s(a1), . . . , s(an))}
s, h |= H1 ∗H2 i� ∃ domain-disjoint h1, h2, s.t.

s, h1 |= H1 and s, h2 |= H2 and h = h1 ◦ h2

s, h |= F1 ∨ F2 i� s, h |= F1 or s, h |= F2

s, h |= ∃x.F i� ∃v. s[x 7→ v], h |= H

where sta
ks s are fun
tions from variables to values, heaps h are �nite partial

maps from addresses to value tuples (where addresses are a subset of values) and

◦ is disjoint union. The semanti
s of indu
tive predi
ates are standard [6, 7℄.

Indu
tive predi
ates are de�ned in a manner similar to that in Cy
listFO.

For example, an a
y
li
, possibly empty, singly-linked list segment is de�ned as:

(a1 = a2) ⇒ ls(a1, a2) (a1 6= a2) ∗ a1 7→ 〈e3〉 ∗ ls(e3, a2) ⇒ ls(a1, a2)

Left- and right-unfolding rules are generated as in Cy
listFO. Ba
k-linking is

also as in Cy
listFO, ex
ept that
lassi
al weakening is repla
ed by the spatial

weakening of separation logi
,
aptured by the rule B ⊢ C =⇒ A ∗B ⊢ A ∗ C.

3.2 Separation logi
 termination prover. Cy
list

Term

implements a ter-

mination prover for heap-manipulating programs in a simple imperative lan-

guage, the theory of whi
h was presented in [7℄. By way of illustrating the pro-

gramming language, a program that traverses a linked list is as follows.

0: if a1=nil goto 3; 1: a1 := a1→next; 2: goto 0; 3: stop.

Sequents are of the form F ⊢i↓, where F is a pre
ondition in separation logi
 as

in Cy
list

SL

, and i is the line of the program to whi
h the sequent applies. Su
h

10

a sequent expresses the fa
t that if exe
ution starts with the program
ounter

set to i at a state satisfying F , then the program will (safely) terminate. For

example, the sequent ls(a1, nil) ⊢0↓means that the above program will terminate

if started at line 0 with a heap satisfying ls(a1, nil).
Cy
list

Term

builds on Cy
list

SL

. Additional are rules for the symboli

exe
ution of
ommands, derived via weakest pre
onditions. Unfolding rules for

indu
tive predi
ates are generated in a manner similar to that in Cy
list

SL

apart from the fa
t that there are no right-unfold rules. Ba
k-linking is also

similar to that in Cy
list

SL

, ex
ept that in Cy
list

Term

the program
ounters

in the sequents must also mat
h (exa
tly). We note that Cy
list

Term

is not a

program analysis as it la
ks abstra
tion
apability.

4 Proof sear
h issues and experimental results

Designing a proof sear
h pro
edure for a
y
li
 theorem prover poses some design

hallenges distin
t to those of standard proof sear
h. Here we dis
uss the main

issues, and report on our tests of Cy
list's proof sear
h performan
e.

4.1 Global sear
h strategy. Non-an
estral ba
k-links, i.e. ba
k-links that

point to a sequent whi
h is not an an
estor of the ba
k-link,
an signi�
antly

redu
e the depth of a proof [4℄. Thus it is reasonable to
onje
ture that a breadth-

�rst sear
h might �nd these shorter proofs, and
onsequently yield a faster sear
h

algorithm than depth-�rst. Our early experiments overwhelmingly favoured the

latter. We
onje
ture that the high fan-out degree of the sear
h spa
e makes

breadth-�rst sear
h impra
ti
al, even though shorter proofs may be found. Also,

employing a depth-�rst strategy will allow some non-an
estral ba
k-links `to the

left' of the
urrent subgoal but also to open subgoals `to the right' of the
urrent

subgoal, thus representing a reasonable
ompromise. A best-�rst strategy might

perform better and we intend to pursue this question in future work.

4.2 Soundness
he
king. Invoking a model
he
ker to
he
k the soundness

of a pre-proof
an be a
ostly step during proof sear
h. To mitigate this we

employ an abstra
tion/minimisation heuristi
 that redu
es the size of the proof

graphs to be
he
ked by pruning leaf subgoals and
omposing
ertain types of

su

essive ar
s. In the
ontext of iterative depth-�rst sear
h we also memoise the

results of these
he
ks so as to avoid dupli
ation of e�ort. This led to an order

of magnitude of redu
tion in the
ost of the soundness
he
k, and is re�e
ted in

the low proportion of time spent
he
king soundness in our tests (see Table 4).

4.3 Forming ba
k-links. When a partial pre-proof is found to be unsound

then we know that it
an never form part of a sound,
losed proof. Thus we

have the
hoi
e of either
he
king soundness on
e when the proof is
losed, or to

apply the
he
k eagerly, i.e. every time a ba
k-link is formed. Our tests showed a

lear advantage in the eager soundness
he
king strategy under both depth- and

breadth-�rst sear
h s
hemes. We
onje
ture that early elimination of an unsound

proof leads to a major redu
tion of the size of the sear
h spa
e outweighing the

ost of frequent soundness
he
king, espe
ially after our optimisations.

11

It is known that the set of sequents provable with the use of non-an
estral

ba
k-links is equal to that with ba
k-linking restri
ted to an
estor nodes [4℄.

This raises the question whether using only an
estral ba
k-links improves per-

forman
e, due to a smaller number of
alls to mat
hing fun
tions and soundness

he
ks. Restri
ting ba
k-links to an
estral nodes does not speed up the instantia-

tions we provide, but makes some proofs impra
ti
al. It seems that the mat
hing

fun
tions we use will not �re signi�
antly more often when allowed a

ess to non-

an
estral nodes, and thus will not lead to ex
essive soundness
he
king.

4.4 Order of rule appli
ations. As in most theorem provers, the order in

whi
h inferen
e rules/ta
ti
s are attempted dire
tly impa
ts performan
e. We

list here two points spe
i�
 to
y
li
 theorem proving. First, when mat
hing

fun
tions are
omputationally
heap, they
an be prioritised and attempted early

and often, eagerly
reating ba
k-links. Used within ta
ti
s su
h as fold-then-

mat
h, they
an entail a higher
omputational
ost and are thus pla
ed last in

the priority order. Se
ond, unfolding rules generally in
rease the size of sequents,

thus have lower priority than other inferen
e rules. In parti
ular, left-unfolding

pre
edes right-unfolding as it introdu
es progressing tra
e pairs in the
y
li

proof, and, it may (after simpli�
ation) enable right-unfolding rules to �re.

4.5 Predi
ate folding/lemma appli
ation. It seems
ertain that Cut elim-

ination does not hold, in general, for
y
li
 proof systems. Thus the ability to

onje
ture and apply lemmas
an be
ru
ial to a su

essful proof, as is the
ase,

e.g., in our Example 6 above. Our instantiations of Cy
list do not yet permit

the appli
ation of arbitrary lemmas. Instead, we
urrently permit only predi
ate

foldings, where the lemma applied is essentially an indu
tive rule. For exam-

ple, the indu
tive rule Add(x, y, z) ⇒ Add(sx, y, sx) from Example 1 be
omes

the �folding� lemma Add(x, y, z) ⊢ Add(sx, y, sx). We found empiri
ally that

this very limited form of lemma appli
ation is very useful in quite a number of

proofs.

4.6 Limitations. Cy
list is a young framework aimed at proving theorems

with a
omplex indu
tive stru
ture. As su
h, it does not yet utilise the totality

of existing know-how on theorem proving, and this entails some limitations.

Fo
ussing on indu
tive predi
ates means that fun
tion de
laration and re-

lated equational reasoning fa
ilities are la
king. As a result Cy
listFO has di�-

ulty dealing with heavily-equational goals, sin
e su
h goals have to be translated

into a predi
ate-based language resulting in loss of stru
tural information.

Another limitation is that, although we do provide a predi
ate folding fa
ility

as explained above, we have no fun
tionality
urrently for applying general lem-

mas, and this restri
ts the ability of Cy
list instantiations to prove theorems

that must rely on the use of Cut in their proofs.

A well-known example that is unprovable as yet in Cy
listFO and demon-

strates both limitations is the
ommutativity of addition. In Cy
listFO this goal

an be expressed relationally as Nx,Ny,Add(x, y, z) ⊢ Add(y, x, z). This form
dis
ourages the use of rewriting te
hniques guided by the stru
ture of terms. In

addition, the
y
li
 proof of the theorem requires essentially the same lemma,

12

x+sy = s(x+y), as is needed for the standard indu
tive proof (relationally, this

lemma
an be stated as Nx,Ny,Add(x, y, z) ⊢ Add(x, sy, sz)). In standard in-

du
tive theorem provers, this lemma would be supplied as a �hint� to the prover,

or would be found by an appropriate
onje
ture me
hanism (
f. [16℄).

4.7 Experimental results. The results of tests run on the three instantiations

of Cy
list are summarised in Table 4. All tests were run on a x64 Linux system

with an Intel i5 3.33GHz. Cy
list and all tests are available online at [1℄.

Cy
listFO.We ran a number of tests with the �rst-order prover, mainly involv-

ing natural number indu
tion. The two most interesting theorems we managed

to prove are �the P & Q example� [24℄, and the sequent appearing in Example 6.

Both proofs have a
omplex indu
tive stru
ture, multiple
y
les and require the

use of predi
ate folding. They are both found in under a se
ond. It is notable

that Example 6 uses a lemma (Nx ⊢ Nssx) that is not an instan
e of folding (it

represents a �double fold�). Cy
listFO proves this theorem by �nding a deeper

proof that requires only single folds.

Cy
list

SL

. The prover was run on the test
ases from [8℄. Proving time is

nearly zero for most, suggesting that Cy
list

SL

ould be used as a ba
kend for

program analysis that automati
ally handles arbitrary indu
tive datatypes.

Cy
list

Term

. We ran the termination
he
ker on a number of small programs

in
luding the programs in [7℄. Notable are an iterative binary-tree sear
h (pro-

gram B in Table 4) and the reversal of a frying-pan list (program C, last theorem

in Table 4). The authors of [3℄ report that theMutant tool for separation logi
,

whi
h deals only with lists, fails to prove the latter theorem (under an appro-

priate pre
ondition). A
y
li
 termination proof was later presented in [7℄ where

it was painstakingly
onstru
ted by hand. Cy
list

Term

proves this in under a

se
ond. Its proof
ontains �ve
y
les, all requiring predi
ate folding.

5 Related work

There are a few theorem provers employing
y
li
 proof in some form. The

QuodLibet tool [2℄, based on �rst-order logi
 with indu
tive datatypes, uses a

version of in�nite des
ent to prove indu
tive theorems whereby a proof node is

annotated with a weight, whi
h must stri
tly de
rease at ba
k-link sites. Com-

pared to Cy
list, whi
h is fully automati
, QuodLibet is intended for semi-

intera
tive proof. An automated
y
li
 prover for entailments of separation logi
,

implemented in HOL Light, appeared in [8℄. Compared to Cy
list

SL

, the prover

in [8℄ disallows non-an
estral ba
k-links and uses a restri
ted soundness
ondi-

tion, whi
h in parti
ular rules out the use of predi
ate folding. Nguyen and

Chin [19℄ provide a separation logi
 entailment prover using
y
li
 proof, but

whi
h appears to be restri
ted in at least as many ways as [8℄.

In summary, the main restri
tions on previous
y
li
 provers are: (a) a sin-

gle logi
al setting; (b) an
estral
y
le s
hemes; (
) strong soundness
onditions

that rule out many proofs; and (d) automated sear
h limited to
ut-free proofs.

Cy
list lifts all of these restri
tions, albeit only partially in the
ase of (d).

13

Theorem Time SC% Depth Nodes Uns./All

O1x ⊢ Nx 16 0 5 7 0/1

E1x ∨O2x ⊢ Nx 20 0 6 15 4/6

E1x ∨O1x ⊢ Nx 16 25 4 9 2/4

N1x ⊢ Ox ∨ Ex 12 0 4 6 0/1

N1x ∧ N2y ⊢ Q(x, y) 512 31 7 13 171/181

N1x ⊢ Add(x, 0, x) 4 0 3 5 0/1

N1x ∧ N2y ∧ Add3(x, y, z) ⊢ Nz 24 0 4 6 3/4

N1x ∧ N2y ∧ Add3(x, y, z) ⊢ Add(x, s(y), s(z)) 40 20 5 12 8/9

N1x ∧ N2y ⊢ R(x, y) 560 44 7 26 176/183

x 7→ y ∗ RList1(y, z) ⊢ RList(x, z) 16 0 5 8 0/1

RList1(x, y) ∗ RList2(y, z) ⊢ RList(x, z) 16 0 4 7 0/1

List1(x, y) ∗ y 7→ z ⊢ List(x, z) 8 0 4 6 0/1

List1(x, y) ∗ List2(y, z) ⊢ List(x, z) 8 0 3 5 0/1

PeList1(x, y) ∗ y 7→ z ⊢ PeList(x, z) 12 0 4 6 0/1

PeList1(x, y) ∗ PeList2(y, z) ⊢ PeList(x, z) 12 0 3 4 0/1

DLL1(x, y, z, w) ⊢ SLL(x, y) 12 0 3 5 0/1

DLL1(x, y, z, w) ⊢ BSLL(z, w) 12 0 4 6 0/1

DLL1(x, y, z, w) ∗ DLL2(a, x, w, b) ⊢ DLL(a, y, z, b) 8 0 3 4 0/1

ListO1(x, y) ∗ ListO2(y, z) ⊢ ListE(x, z) 12 0 5 12 0/1

ListE1(x, y) ∗ ListE2(y, z) ⊢ ListE(x, z) 20 0 5 8 0/1

ListE1(x, y) ∗ ListO2(y, z) ⊢ ListO(x, z) 24 0 5 8 0/1

BinListFirst1x ⊢ BinTreex 8 0 4 6 0/1

BinListSecond1x ⊢ BinTreex 20 0 4 6 0/1

BinPath1(x, z) ∗ BinPath2(z, y) ⊢ BinPath(x, y) 24 0 3 6 0/2

BinPath1(x, y) ⊢ BinTreeSeg(x, y) 16 0 4 8 0/2

BinTreeSeg
1
(x, z) ∗ BinTreeSeg

2
(z, y) ⊢ BinTreeSeg(x, y) 12 0 3 6 0/2

BinTreeSeg
1
(x, y) ∗ BinTreey ⊢ BinTree(x) 12 0 3 6 0/2

x 6= z ∗ x 7→ y ∗ ls1(y, z) ⊢ ls(x, z) 0 0 2 2 0/0

ls1(x, y) ∗ ls2(y, nil) ⊢ ls(x, nil) 16 0 3 4 0/1

ListE1(x, y) ∨ ListO1(x, y) ⊢ List(x, y) 16 0 4 9 2/4

A: ls1(x, nil) ⊢0↓ 16 0 5 7 0/1

B: btx ⊢0↓ 12 0 6 13 0/2

C: ls1(x, nil) ∗ ls2(y, nil) ⊢1↓ 52 8 8 10 13/14

D: y 6= nil ∗ ls1(x, nil) ∗ ls2(y, nil) ⊢0↓ 2036 16 12 24 197/233

C:

ls(x, z) ∗ ls(y, nil) ∗ z 7→ a ∗ ls(a, z)
∨ ls(b, nil) ∗ z 7→ b ∗ ls(x, z) ∗ ls(y, z)
∨ ls(x, nil) ∗ ls(y, z) ∗ z 7→ c ∗ ls(c, z) ⊢1↓ 124 0 9 39 19/23

A B C D

// List traversal

0: if x=nil goto 3;

1: x := x→next;

2: goto 0;

3: stop

// Bin. tree sear
h

0: if x=nil goto 6;

1: if * goto 4;

2: x := x→left ;

3: goto 0 ;

4: x := x→right ;

5: goto 0 ;

6: stop

// List reversal

0: y := nil;

1: if x=nil goto 7;

2: z := x;

3: x := x→next;

4: z→next := y;

5: y := z;

6: goto 1;

7: stop

// List append

// (one-at-a-time)

0: if x=nil goto 10;

1: z := y→next;

2: if z 6=nil goto 8;

3: y→next := x;

4: x := x→next;

5: y := y→next;

6: y→next := nil;

7: goto 0;

8: y := y→next;

9: goto 0;

10: stop

Table 1. Upper: Theorems proved by the instantiations. The
olumn labelled `Time' is

the time taken in millise
onds, `SC%' is the per
entage of time taken by the soundness

he
ks, `Depth' is the depth of the proof found, `Nodes' is the number of nodes in the

proof and the last
olumn shows the number of
alls to the model
he
ker as (
alls on

unsound proof)/(total
alls). Lower: The input programs to the termination prover.

NB the formulas used for program C are loop invariants and as su
h the program

ounter in the judgment is set to 1, i.e., a statement in the loop.

14

The �size
hange prin
iple� for program termination by Lee et al [18℄ is based

on a
ondition similar to the soundness
ondition for
y
li
 proofs: a program

terminates if every possible in�nite exe
ution in the
ontrol �ow graph would

result in an in�nite des
ent of some well-founded data value. It is plausible that

the approa
h of [18℄ to termination
he
king, empiri
ally shown to often be

more e�
ient in pra
ti
e than a Bü
hi automata
onstru
tion [14℄, would also

bene�t the soundness
he
king in Cy
list. However, in
ontrast to size-
hange

termination problems, the main problem we fa
e is not in
he
king the soundness

ondition, but in dis
overing the
orre
t
andidate pre-proofs.

Finally, there are a number of mature, automated theorem provers employ-

ing expli
it indu
tion, in
luding ACL2 [17℄, IsaPlanner [12℄, LambdaOtter and

many others. Unfortunately, most test suites for these provers are largely based

on equational reasoning about fun
tions over indu
tive datatypes, whereas our

instantiations of Cy
list
urrently only
ater for indu
tively de�ned predi
ates,

making a dire
t
omparison di�
ult. These tools will most probably outperform

ours on problems requiring extensive rewriting, generalisation or the appli
ation

of non-trivial lemmas. On the other hand, Cy
list performs well on small prob-

lems requiring
omplex indu
tion s
hemes, whi
h are typi
ally problemati
 for

expli
it indu
tion (
f. Example 6). Thus we believe that integrating the sophis-

ti
ated non-indu
tive features of expli
it-indu
tion provers into Cy
list might

yield signi�
ant bene�ts. For example,
onje
turing appropriate lemmas (
f. [16℄)

seems extremely useful in forming ba
k-links during proof sear
h.

6 Con
lusions and future work

The main
ontributions of this paper are our generi
 theory of
y
li
 proof,

its unrestri
ted implementation in our theorem prover Cy
list, and the appli-

ation of Cy
list to three
on
rete logi
al systems, in
luding automated proof

sear
h pro
edures. In parti
ular, we provide the �rst implementation of the
y
li

proof system for program termination proposed in [7℄. We believe that Cy
list

represents the �rst fully general implementation of
y
li
 proof.

Although Cy
list is by no means an industrial-strength theorem prover, the

results of our experiments to date are nevertheless en
ouraging. In its various

instantiations, the prover is
apable of automati
ally proving theorems with a

omplex indu
tive stru
ture, notable Wirth's �P&Q� example, the proof of in-

pla
e reversal of a �frying-pan� list from [7℄, and our own Example 6.

There are obvious dire
tions in whi
h Cy
list
ould be improved, both

at the generi
 level (e.g. fun
tion de�nition over datatypes, rewriting support,

lemma appli
ation and generalisation me
hanisms) and in its various instantia-

tions (e.g. more advan
ed sear
h strategies for parti
ular logi
s). There is also

the potential for developing new instantiations of Cy
list to other �xed-point

logi
s, su
h as the µ-
al
ulus or temporal logi
s. We warmly en
ourage the de-

velopment of su
h instantiations by interested readers.

15

Referen
es

1. Cy
list framework download. http://www.
s.u
l.a
.uk/staff/ngorogia/

2. Avenhaus, J., Kühler, U., S
hmidt-Samoa, T., Wirth, C.P.: How to prove indu
tive

theorems? QuodLibet! In: CADE-19. LNAI 2741, pp. 328�333. Springer (2003)

3. Berdine, J., Cook, B., Distefano, D., O'Hearn, P.W.: Automati
 termination proofs

for programs with shape-shifting heaps. In: CAV-18. LNCS 4144, pp. 386�400.

Springer (2006)

4. Brotherston, J.: Cy
li
 proofs for �rst-order logi
 with indu
tive de�nitions. In:

TABLEAUX-14. LNAI 3702, pp. 78�92. Springer-Verlag (2005)

5. Brotherston, J.: Sequent Cal
ulus Proof Systems for Indu
tive De�nitions. Ph.D.

thesis, University of Edinburgh (November 2006)

6. Brotherston, J.: Formalised indu
tive reasoning in the logi
 of bun
hed impli
a-

tions. In: SAS-14. LNCS, vol. 4634, pp. 87�103. Springer-Verlag (2007)

7. Brotherston, J., Bornat, R., Cal
agno, C.: Cy
li
 proofs of program termination in

separation logi
. In: POPL-35, pp. 101�112. ACM (2008)

8. Brotherston, J., Distefano, D., Petersen, R.L.: Automated
y
li
 entailment proofs

in separation logi
. In: CADE-23. LNAI 6803, pp. 131�146. Springer (2011)

9. Brotherston, J., Simpson, A.: Sequent
al
uli for indu
tion and in�nite des
ent.

Journal of Logi
 and Computation 21(6), pp. 1177�1216, (De
 2011).

10. Bundy, A.: The automation of proof by mathemati
al indu
tion. In: Handbook of

Automated Reasoning, vol. I,
hap. 13, pp. 845�911. Elsevier S
ien
e (2001)

11. Couvreur, J.M.: On-the-�y veri�
ation of linear temporal logi
. In: FM. pp. 253�

271. Springer-Verlag (1999)

12. Dixon, L., Fleuriot, J.: IsaPlanner: A prototype proof planner in Isabelle. In:

CADE'03. pp. 279�283 (2003)

13. Duret-Lutz, A., Poitrenaud, D.: Spot: An extensible model
he
king library using

transition-based generalized Bü
hi automata. In: MASCOTS. pp. 76�83. (2004)

14. Fogarty, S., Vardi, M.: Bü
hi
omplementation and size-
hange termination. In:

TACAS-15. LNCS 5505, pp. 16�30 (2009)

15. Friedgut, E., Kupferman, O., Vardi, M.Y.: Bü
hi
omplementation made tighter.

In: 2nd Int. Symp. on Automated Te
hnology for Veri�
ation and Analysis (2004)

16. Johansson, M., Dixon, L., Bundy, A.: Conje
ture synthesis for indu
tive theories.

Journal of Automated Reasoning 47(3) (O
t 2011)

17. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-

proa
h. Kluwer (2000)

18. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-
hange prin
iple for program

termination. In: POPL-28, pp. 81�92. ACM (2001)

19. Nguyen, H.H., Chin, W.N.: Enhan
ing program veri�
ation with lemmas. In: CAV-

20. LNCS 5123, pp. 355�369. Springer (2008)

20. S
höpp, U., Simpson, A.: Verifying temporal properties using expli
it approxi-

mants: Completeness for
ontext-free pro
esses. In: FOSSACS-5. LNCS 2303, pp.

372�386. Springer (2002)

21. Sprenger, C., Dam, M.: A note on global indu
tion me
hanisms in a µ-
al
ulus with
expli
it approximations. Theor. Informati
s and Appli
ations 37, 365�399 (2003)

22. Sprenger, C., Dam, M.: On the stru
ture of indu
tive reasoning:
ir
ular and tree-

shaped proofs in the µ-
al
ulus. In: FOSSACS-6. LNCS 2620, pp. 425�440. Springer
(2003)

23. Stirling, C., Walker, D.: Lo
al model
he
king in the modal µ-
al
ulus. Theoreti
al
Computer S
ien
e 89, 161�177 (1991)

24. Wirth, C.P.: Des
ente in�nie + Dedu
tion. Logi
 J. of the IGPL 12(1), 1�96 (2004)

16

