
The Complexity of Abduction for
Separated Heap Abstractions

Nikos Gorogiannis, Max Kanovich, and Peter W. O’Hearn

Queen Mary University of London

Abstract. Abduction, the problem of discovering hypotheses that sup-
port a conclusion, has mainly been studied in the context of philosoph-
ical logic and Artificial Intelligence. Recently, it was used in a compo-
sitional program analysis based on separation logic that discovers (par-
tial) pre/post specifications for un-annotated code which approximates
memory requirements. Although promising practical results have been
obtained, completeness issues and the computational hardness of the
problem have not been studied. We consider a fragment of separation
logic that is representative of applications in program analysis, and we
study the complexity of searching for feasible solutions to abduction. We
show that standard entailment is decidable in polynomial time, while ab-
duction ranges from NP-complete to polynomial time for different sub-
problems.

1 Introduction

Abductive inference is a mode of reasoning that concerns generation of new hy-
potheses [25]. Abduction has attracted attention in Artificial Intelligence (e.g.,
[24]), based on the idea that humans perform abduction when reasoning about
the world, such as when a doctor looking at a collection of symptoms hypothe-
sizes a cause which explains them.

Similarly, when a programmer tries to understand a piece of code, he or she
makes hypotheses as well as deductions. If you look at the C code for traversing
a cyclic linked list, you might hypothesize that an assertion describing a cyclic
list should be part of the precondition, else one would obtain a memory error,
and you might even discover this from the code itself rather than by communi-
cation from the program’s designer. In separation logic, a specialized logic for
computer memory, the abduction problem – given A and B, find X where the
separating conjunction A ∗ X is consistent and A ∗ X entails B – takes on a
spatial connotation where X describes “new” or “missing” memory, not avail-
able in the part of memory described by A. Recent work has used abductive
inference for separation logic to construct an automatic program analysis which
partly mimics, for a restricted collection of assertions describing memory-usage
requirements of procedures, the combined abductive-deductive-inductive reason-
ing that programmers employ when approaching bare code [6]. Abduction is used
in the generation of preconditions, after which forwards analysis can be used to
obtain a postcondition and, hence, a true Hoare triple for the procedure, without
consulting the procedure’s calling context, resulting in a compositional analysis.

Compositionality – that the analysis result of a whole is computed from the
analysis results of its parts – has well-known benefits in program analysis [9],

including the ability to analyze incomplete programs (e.g., programs as they are
being written) and increased potential to scale. Abductive inference has enabled
a boost in the level of automation in shape analysis (e.g., [26,13]) – an expensive
“deep memory” analysis which involves discovering data structures of unbounded
depth in the heap. The Abductor academic prototype tool has been applied
to several open-source projects in the hundreds of thousands of LOC [11], and
Infer is an industrial tool which incorporates these and other ideas [5].

Other applications of abduction for separation logic include the analysis of
concurrent programs [7], memory leaks [12], abduction for functional correctness
rather than just memory safety [17], and discovering specifications of unknown
procedures [22]. The latter is somewhat reminiscent of the (to our knowledge)
first use of abduction in program analysis, a top-down method that infers con-
straints on literals in a logic program starting from a specification of a top-level
program [16]. In contrast, Abductor works bottom-up, obtaining specs for pro-
cedures from specs of their callees (it would evidently be valuable to mix the
two approaches). A seemingly unrelated use of abduction in program analysis is
in under-approximation of logical operators such as conjunction and disjunction
in abstract domains with quantification [18].

While the potential applications are perhaps encouraging, the abduction
problem for separated heap abstractions has not been investigated thoroughly
from a theoretical point of view. The proof procedures used are pragmatically
motivated and sound but demonstrably incomplete, and questions concerning
complexity or the existence of complete procedures have not been addressed.
Our purpose in this paper is to consider complexity questions (taking com-
pleteness as a requirement) for the abduction problem for a fragment of logic
representative of that used in program analysis.

In the context of classical logic, abduction has been studied extensively and
there are several results about its algorithmic properties when using, for ex-
ample, different fragments of propositional logic as the base language [14,10].
However, the results do not carry over to our problem because the special ab-
stract domains used in shape analyzers are different in flavour from propositional
logic. For example, the use of variables and equalities and disequalities in sepa-
rated heap abstractions raise particular problems. Furthermore, understanding
the interaction between heap-reachability and separation is subtle but essential.

The contents of the paper are as follows. In Section 2 we define the restricted
separation logic formulae we use, called ‘symbolic heaps’ [2,13], which include a
basic ‘points-to’ predicate, and an inductive predicate for describing linked-list
segments. The separated abduction problem is defined in Section 3 along with
a ‘relaxed’ version of the problem, often used in program analysis. Section 4
shows that entailment is in PTIME and contains an interpolation-like result which
bounds the sizes of solutions that must be considered in abduction. Section 5
establishes that when lists are present both the general and relaxed problems
are NP-complete. Section 6 shows that the abduction problem is NP-complete
when the formulae have only points-to predicates, and that the ‘relaxed’ version
of the problem can be solved in polynomial time.

2

2 Preliminaries

This section records background material on separated heap abstractions [2,13].

2.1 Syntax of Separated Heap Abstractions

Let Var be a countable set of variables. The set of terms is simply Terms =
Var∪{nil} where nil 6∈ Var. Spatial predicates P , pure formulae Π and spatial
formulae Σ are defined as follows, where x, y are terms.

P (x, y) ::= x 7→ y | ls(x, y)

Π ::= Π ∧Π | x = y | x 6= y

Σ ::= Σ ∗Σ | P (x, y) | emp | true
A formula in one of the forms: Π ∧Σ, Π, or Σ is called a symbolic heap. We

employ ≡ to denote syntactic equality of two expressions modulo commutativity
of ∧, ∗, and symmetry of = and 6=. We will say that the term x is an L-value in
a formula A if there is a term y such that the spatial predicate P (x, y) is in A.

The separating conjunction of two symbolic heaps is defined as follows.

(ΠA ∧ΣA) ∗ (ΠB ∧ΣB) = (ΠA ∧ΠB) ∧ (ΣA ∗ΣB)

This definition is, in fact, an equivalence in general separation logic.
The formula ls(y, z) expresses that the heap consists of a non-empty acyclic

path from y to z, and that z is not an allocated cell in the heap. The formula x 7→
y describes a singleton heap in which x is allocated and has contents y. Cycles can
be expressed with compound formulae. For instance, ls(y, x) ∗ ls(x, y) describes
two acyclic non-empty linked lists which together form a cycle: this is the kind
of structure sometimes used in cyclic buffer programs.

As always in program analysis, what cannot be said is important for allowing
efficient algorithms for consistency and entailment checking. General separation
logic, which allows ∗ and its adjoint −∗ to be combined with all boolean connec-
tives, is undecidable even at the propositional level [4]. In the fragment here we
cannot express, e.g., that there are not two separate lists in the heap, or that the
data elements held in a list are sorted. We can describe memory safety properties
of linked-list programs (that data structures are well formed) but not functional
correctness (e.g., that a list insertion procedure actually inserts). As we will
see, we obtain a polynomial-time algorithm for entailment (hence, consistency).
In more expressive decidable heap logics (e.g., [23,27,21,3]) these problems can
range from PSPACE to even non-elementary complexity.

2.2 Semantics

The logic is based on a model of heap partitioning.

Definition 2.1 Stack-and-heap models are defined as pairs (s, h), where s (the
stack) is a mapping from variables Var to values Val, and h (the heap) is a finite
partial function from an infinite L to RV (L-values to R-values in Strachey’s
terminology). Here we take RV to be L∪{nil} where nil 6∈ L. The composition
h1 ◦ h2 is the union of h1 and h2 if dom(h1) ∩ dom(h2) = ∅, else undefined.

3

The value nil plays the role of a special never-to-be allocated pointer which
is useful, e.g., for terminating linked lists. The heaps here have at most one
successor for any node, reflecting our focus on linked lists rather than trees
or graphs in the symbolic heaps that we study. (Eventually, we would like to
consider general inductive definitions; they are easy to consider semantically, but
extremely challenging, and beyond our scope, for decidability of entailment.)

We will use stacks as functions and write s(x) for the value of a variable x.
We extend this notation to include nil: s(nil) = nil. Whenever s(x)=a and
s(y)=b, the spatial predicate x 7→ y is true in the one-cell heap of the form

a- b , or
a•−→b• , which depicts that the ‘location’ a contains the value b.

The formal definition of the semantics is as follows.

Definition 2.2 Given any (s, h) and formula A, we define the forcing relation
(s, h) � A by induction on A (see [2]):

(s, h) � emp iff h = [] is the empty heap
(s, h) � A ∗B iff ∃h1, h2. h = h1 ◦ h2 and (s, h1) � A and (s, h2) � B,
(s, h) � A ∧B iff (s, h) � A and (s, h) � B,
(s, h) � true always,
(s, h) � (x = y) iff s(x)= s(y),
(s, h) � (x 6= y) iff s(x) 6= s(y),
(s, h) � x 7→ y iff dom(h) = {s(x)} and h(s(x)) = s(y),

(s, h) � ls(x, y) iff for some n ≥ 1, (s, h) � ls(n)(x, y),

(s, h) � ls
(n)(x, y) iff | dom(h)| = n, and there is a chain a0, . . . , an,

with no repetitions, such that h(a0) = a1, . . . , h(an−1) = an,
where a0 =s(x), an =s(y) and an 6= a0 (notice that s(y) /∈ dom(h)).

Remark 2.3 A precise formula [8] cuts out a unique piece of heap, making
the non-deterministic ∃-selection in the semantics of ∗ become deterministic.
For instance, if (s, h) � ls(x, y) ∗B, then h is uniquely split into h1, h2 so that
(s, h1) � ls(x, y) and (s, h2) � B, where h1 is defined as an acyclic path from
s(x) to s(y). In this fragment, any formula not containing true is precise.

As usual, we say that a formula A is consistent if (s, h) � A for some (s, h).
A sequent A � B is called valid if for any model (s, h) such that (s, h) � A we
have (s, h) � B. Finally, we call a formula explicit if it syntactically contains all
equalities and disequalities it entails.

We shall use the inference rules below [2].

A � B =⇒ A ∗ C � B ∗ C (∗-Intr)

x = y ∧A � B ⇐⇒ A[x/y] � B[x/y] (Subst)

Rule ∗-Intr expresses the monotonicity of ∗ w.r.t �. Rule Subst is a standard
substitution principle.

Sample True and False Entailments
x 7→ x′ ∗ y 7→ y′ � x 6= y x 7→ x′ ∗ ls(x′, y) 6� ls(x, y)
x 7→ x′ ∗ x 7→ y′ � x 6= x x 7→ x′ ∗ ls(x′, y) ∗ y 7→ z � ls(x, y) ∗ y 7→ z

ls(x, x′) ∗ ls(y, y′) � x 6= y

4

-•
s(x) -•

τ -•
s(y)

•
s(z)

(a)

-•
s(x) -• •

s(y)s(z)	

(b)

Fig. 1. (a) The fully acyclic heap. (b) The scorpion-like heap which destroys the validity
of (z 6=x) ∧ (z 6=y) ∧ ls(x, y) ∗ y 7→ z � ls(x, z).

The three examples on the left illustrate the anti-aliasing or separating properties
of ∗, where the two on the right illustrate issues to be taken into account in
rules for appending onto the end of list segments (a point which is essential in
completeness considerations [2]). Appending a cell to the head of a list is always
valid, as long as we make sure the end-points are distinct:

(z 6=x) ∧ x 7→ y ∗ ls(y, z) � ls(x, z),

whereas appending a cell to the tail of a list generally is not valid. Although
s(z) 6=s(x) and s(z) 6=s(y) in Fig 1(b), the dangling z stings an intermediate
point τ in ls(x, y), so that

(z 6=x) ∧ (z 6=y) ∧ ls(x, y) ∗ y 7→ z 2 ls(x, z).

To provide validity, we have to ‘freeze’ the dangling z, for instance, with ls(z, v):

ls(x, y) ∗ ls(y, z) ∗ ls(z, v) � ls(x, z) ∗ ls(z, v)

3 Separated Abduction Problems

Before giving the main definitions, it will be helpful to provide some context by
a brief discussion of how abduction can be used in program analysis.

We consider a situation where each program operation has preconditions
that must be met for the operation to succeed. A pointer dereferencing state-
ment x→ next = y might have the assertion x 7→ x′ as a precondition. A larger
procedure might have preconditions tabulated as part of a ‘procedure summary’.
Abduction is used during a forwards-running analysis to find out what is missing
from the current abstract state at a program point, compared to what is required
by the operation, and this abduced information is used to build up an overall
precondition for a body of code.

For example, suppose that the assertion ls(x, nil)∗ls(y, nil) is the precon-
dition for a procedure (it might be a procedure to merge lists) and assume that
we have the assertion x 7→ nil at the call site of the procedure. Then solving

x 7→ nil ∗ Y ? � ls(x, nil) ∗ ls(y, nil)

would tell us information we could add to the current state, in order to abstractly
execute the procedure. An evident answer is Y = ls(y, nil) in this case.

Sometimes, there is additional material in the current state, not needed by
the procedure; this unused portion of state is called the frame ([20], after the
frame problem from Artificial Intelligence). Suppose x 7→ nil∗z 7→ w ∗w 7→ z is
the current state and ls(x, nil)∗ls(y, nil) is again the procedure precondition,
then z 7→ w∗w 7→ z is the leftover part. In order to cater for leftovers, abduction
is performed with true as a ∗-conjunct on the right. To see why, consider that

x 7→ nil ∗ z 7→ w ∗ w 7→ z ∗ Y ? � ls(x, nil) ∗ ls(y, nil).

5

has no consistent solution, since the cycle between z and w cannot form a part
of a list from y to nil. However, Y = ls(y, nil) is indeed a solution for

x 7→ nil ∗ z 7→ w ∗ w 7→ z ∗ Y ? � ls(x, nil) ∗ ls(y, nil) ∗ true.
In the approach of [6] a separate mechanism, frame inference, is used after ab-
duction, to percolate the frame from the precondition to the postcondition of an
operation. We will refer to this special case of the abduction problem, with true

on the right, as the relaxed abduction problem.
With this as background, we now give the definition of the main problems

studied in the paper.

Definition 3.1 (1) We say that X is a solution to the abduction problem
A ∗X? � B if A ∗X is consistent and the sequent A ∗X � B is valid.

(2) We use SAP(7→) to refer to the abduction problem restricted to formulae
that have no ls predicate, and SAP(7→, ls) for the general problem. The inputs
are two symbolic heaps A and B. The output is ‘yes’ if there is a solution to the
problem A ∗X? � B, ‘no’ otherwise. rSAP(7→) and rSAP(7→, ls) refer to the
specializations of these problems when B is required to include ∗true.

We have formulated SAP as a decision problem, a yes/no problem. For appli-
cations to program analysis the analogous problem is a search problem: find a
particular solution to the abduction problem A ∗X? � B, or say that no solu-
tion exists. Clearly, the decision problem provides a lower bound for the search
problem and as such, when considering NP-hardness we will focus on the deci-
sion problem. When considering upper bounds, we give algorithms for the search
problem, and show membership of the decision problem in the appropriate class.

In general when defining abduction problems, the solutions are restricted
to ‘abducible’ facts, which in classical logic are often conjunctions of literals.
Here, the symbolic heaps are already in restricted form, which give us a sep-
aration logic analogue of the notion of abducible: ∗-conjunctions of points-to
and list segment predicates, and ∧-conjunctions of equalities and disequalities.
Also, when studying abduction, one often makes a requirement that solutions be
minimal in some sense. At least two criteria have been offered in the literature
for minimality of SAP [6,22]. We do not study minimality here. Our principal
results on NP-hardness apply as well to algorithms searching for minimal so-
lutions as lower bounds, and we believe that our ‘easiness’ results concerning
cases when polytime is achievable could carry over to minimality questions. We
have concentrated on the more basic case of consistent solutions here, leaving
minimality for the future.

4 Membership in NP

The main result of this section is the following, covering both SAP(7→, ls) and
rSAP(7→, ls).

Theorem 4.1 (NP upper bound) There is an algorithm, running in nonde-
terministic polynomial time, such that for any formulae A and B, it outputs a
solution X to the abduction problem A ∗X? � B, or says that no solution exists.

6

Proof. Given A and B, let Z = {z1, z2, .., zn} be the set of all variables and
constants occurring in A and B. We define a set of candidates X in the following
way. The spatial part ΣX of X is defined as

x1 7→ zi1 ∗ x2 7→ zi2 ∗ · · · ∗ xm 7→ zim
where distinct x1, x2,.., xm are taken from Z and {zi1 , zi2 , .., zim} ⊆ Z (for the
sake of consistency we take x1, x2,.., xm that are not L-values in A).

The pure part ΠX of X is defined as an ∧-conjunction of formula of the
form (zi=zj)

εij , where (zi=zj)
1 stands for (zi=zj), and (zi=zj)

0 stands for
(zi 6=zj).

The size of any candidate X isO(n2) is quadratic in the size of A and B. Since
consistency and entailment are in PTIME (Theorem 4.3 below), each candidate X
can be checked in polynomial time as to whether it is a solution or not.

The Interpolation Theorem (Theorem 4.4 below) guarantees the complete-
ness of our procedure.

The gist of this argument is that we can check a candidate solution in poly-
nomial time, and only polynomial-sized solutions need be considered (by Inter-
polation). The entailment procedure we use to check solutions relies essentially
on our use of necessarily non-empty list segments (as in [13]). For formulae with
possibly-empty list segments, which are sometimes used (e.g., [19]), we do not
know if entailment can be decided in polynomial time; indeed, this has been an
open question since symbolic heaps were introduced [2].

However, we can still find an NP upper bound for abduction, even if we con-
sider possibly empty list segment predicates. The key idea is to consider saturated
solutions only, i.e., solutions which, for any two variables contain either an equal-
ity or disequality between them. For candidate saturated solutions there is no
empty/non-empty ambiguity, and we can fall back on the polytime entailment
procedure below. Furthermore, a saturation can be guessed by an NP algorithm.

This remark is fleshed out in the following theorem.

Theorem 4.2 (NP upper bound) There is an algorithm, running in nonde-
terministic polynomial time, such that for any formulae A and B in the language
extended with possibly-empty list segments, it outputs a particular solution X to
the abduction problem A ∗X? � B, or says that no solution exists.

We now turn to the two results used in the proof of the above theorems.

Theorem 4.3 (Entailment/Consistency) There is a sound and complete al-
gorithm that decides A � B in polynomial time. As a consequence, consistency
of symbolic heaps can also be decided in polynomial time.

Proof Sketch. The main idea behind the algorithm is to turn the sequent
A � B into an equi-valid sequent A′ � B where all ls predicates in A have
been converted to 7→ predicates in A′. A sequent of this form can be decided
using “subtraction” rules, i.e., rules that produce new equi-valid sequents whose
antecedent and consequent have shorter spatial parts. E.g., it is the case that

C ∗ x 7→ y � D ∗ x 7→ y ⇐⇒ C � D.

7

The procedure terminates when an axiomatically valid sequent is produced, e.g.,
emp � emp or C � true.

The completeness of the algorithm rests on the fact that for a valid sequent
A � ls(x1, y1) ∗ . . . ∗ ls(xn, yn) ∗ T (where T is emp or true) we can uniquely
partition A into n sets Ai that form non-empty paths from xi to yi.

Next we establish that the solutions to abduction can be obtained using vari-
ables only appearing in the antecedent and consequent. This, together with the
fact that in consistent formulae there are no repetitions of L-values in differ-
ent ∗-conjuncts (thus the formula x 7→ y ∗ x 7→ y′ is inconsistent), allows us to
conclude that only polynomial-sized candidate solutions need be considered.

Theorem 4.4 (Interpolation Theorem) Let X be a solution to the abduc-

tion problem: A ∗X � B. Then there is an X̂, a solution to the same abduction
problem, such that X̂ uses only variables and constants mentioned in A or in B,
and the spatial part of X̂ consists only of ‘points-to’ subformulae.

Proof Sketch. We sketch the main ideas with an example X.
First, note that we can get rid of all ls-subformulae in X, since X will be

still a solution to the problem, even if we replace each ls(x, y) occurring in X
with the formula (x 6=y) ∧ x 7→ y.

Suppose X of the form X ′ ∗ x1 7→ z ∗ · · · ∗ xk 7→ z ∗ z 7→ y is a solution to
the abduction problem A ∗X � B, and z does not occur in A, or B, or X ′.
In order to eliminate such an extra z, we replace X with X̂

X̂ = X ′ ∗ x1 7→ y ∗ · · · ∗ xk 7→ y.

To check that such an X̂ is a solution - that is, (s, h) � A ∗ X̂ implies (s, h) � B,
we construct a specific model (s′, hz) so that (s′, hz) � A ∗X with the original X.

Here we take advantage of the fact that z does not participate in h, and
modify s with s′(z)=c where c is fresh. To make hz from h, we substitute the c

for all occurrences of s(y) in h related to s(xi) and then add the cell c- s(y) .

Being a solution, the original X provides that (s′, hz) � B.
To complete the proof, it suffices to show that, because of our specific choice

of the modified (s′, hz), the poorer (s, h) is a model for B as well.

5 NP-completeness

We now show that the general separated abduction problem is NP-complete by
reducing from 3-SAT.

The obstruction to a direct reduction from 3-SAT is that the Boolean dis-
junction ∨, which is a core ingredient of NP-hardness of the problem, is not
expressible in our language. However, the following example illustrates how dis-
junctions over equalities and disequalities can be emulated through abduction.

Example 5.1 Define a formula A as follows, presented graphically to the right.

A ≡ x 7→ w ∗ y 7→ w ∗ w 7→ z

•z
6•w

��•
x
@I•
y

8

Now, let X be an arbitrary solution to the abduction problem:

A ∗ z 7→ z′ ∗X? � u 6= v ∧ z 7→ z′ ∗ ls(x, u) ∗ ls(y, v) ∗ true
Then we can prove the following disjunction:

A ∗ z 7→ z′ ∗X � ((u=z) ∧ (v=w)) ∨ ((v=z) ∧ (u=w)).

Thus any solution X provides either ls(x, z) ∗ ls(y, w), i.e. the path from x to z
and the path from y to w, or ls(y, z) ∗ ls(x,w), i.e. the path from the leaf y to
the root z and the path from the leaf x to the non-terminal vertex w.

This mechanism, which utilizes the semantics of lists and separation in tandem,
achieves emulation of disjunction over pure formulae. We generalize this in the
combinatorial lemma 5.2 and then put it to use in our reduction from 3-SAT.

Lemma 5.2 The tree in Fig. 2(a) has exactly eight non-overlapping (having
no common edges) paths from its leaves to distinct non-terminal vertices. The
disjunction we will emulate is provided by the fact that each path leading from a
leaf to the root is realizable within such a partition into non-overlapping paths.

•y
6
•x̃

i

���
�:

•xi0 XXX
Xy

•x
i
1

�
�*

•xi00 H
HY
•x

i
11H

HY
•x

i
01 �

�*
•xi10

��•
xi000

@I•
xi111

@I•
xi001

��•
xi110

��•
xi010

@I•
xi101

@I•
xi011

��•
xi100

(a)

•y
′

6•y
���

��:
•x̃1 6•x̃2 XXX

XXy
•x̃m

��@@
“A1”

��@@
“A2”

��@@
“Am”

. . .

(b)

Fig. 2. (a) The graph presents Ai associated with a given clause Ci. (b) The graph
presents the “whole” A0 ∗A1 ∗A2 ∗ · · ·Am.

Now we can state our reduction. In essence, for each clause Ci we use a
tree such as the one in Fig. 2a, and add appropriate disequalities so that any
solution to the abduction problem selects a propositional valuation that satisfies
all clauses.

Definition 5.3 (reduction) Given a set of 3-SAT clauses C1,C2,. . . ,Cm, the
problem we consider is to find an X, a solution to the abduction problem

A0 ∗A1 ∗ · · · ∗Am ∗X � Π ∧A0 ∗B1 ∗ · · · ∗Bm ∗ true (P1)

where A0 is y 7→ y′, and each Ai is defined as a ∗-conjunction of all formulae of
the form (see Fig. 2(a)):

xiε1ε2ε3 7→ xiε1ε2 , xiε1ε2 7→ xiε1 , xiε1 7→ x̃i, x̃i 7→ y

where ε1, ε2, ε3 range over zeros and ones, and Bi is defined as a ∗-conjunction
of the form:

ls(xi000, z
i
000) ∗ · · · ∗ ls(xiε1ε2ε3 , z

i
ε1ε2ε3) ∗ · · · ∗ ls(xi111, z

i
111)

For each i, the non-spatial part Π includes disequalities:

(ziε1ε2ε3 6= xiε1ε2ε3),
(ziε1ε2ε3 6= ziδ1δ2δ3), for (ε1, ε2, ε3) 6= (δ1, δ2, δ3),
(ziε1ε2ε3 6= y), if Ci(ε1, ε2, ε3) is false.

(1)

For distinct i and j, Π also includes disequalities of the form

(ziε1ε2ε3 6= zjδ1δ2δ3) (2)

9

whenever (ε1, ε2, ε3) and (δ1, δ2, δ3) are incompatible - that is, they assign con-
tradictory Boolean values to a common variable u from Ci and Cj .

5.1 From 3-SAT to the abduction problem (P1)

Let (α1, α2, . . . , αn) be an assignment of a value 0(false) or 1(true) to each of
the Boolean variables such that it makes all clauses C1,. . . ,Cm true. Then we
can find a solution X̃ to our abduction problem in the following way.

By (βi1, β
i
2, β

i
3) we denote the part of the assignment related to the variables

used in Ci, so that Ci(β
i
1, β

i
2, β

i
3) is true, and for all i and j, (βi1, β

i
2, β

i
3) and

(βj1, β
j
2, β

j
3) are compatible.

Let vi1, vi2, vi3, vi4, vi5, vi6, vi7, vi8 denote y, x̃i, xi0, xi1, xi00, xi01, xi10, xi11, the non-
terminal vertices in Fig. 2. As in Lemma 5.2, we construct eight non-overlapping
paths leading from xi000, xi001,. . . , xi111 to distinct vik1 , vik2 ,. . . , vik8 , respectively,

so that one path leads from xi
βi
1β

i
2β

i
3

to vi1, where (βi1, β
i
2, β

i
3) is specified above.

The part Xi is defined as a set of the following equalities

(zi000 =vik1), (zi001 =vik2), (zi010 =vik3), (zi011 =vik4),
(zi100 =vik5), (zi101 =vik6), (zi110 =vik7), (zi111 =vik8)

which contains, in particular, the equality (zi
βi
1β

i
2β

i
3
=y).

Example 5.4 Fig. 3 yields the following Xi:

(zi000 =xi00), (zi001 =xi0), (zi010 =xi01), (zi011 =y),
(zi100 =xi10), (zi101 =xi1), (zi110 =xi11), (zi111 = x̃i)

Lemma 5.5 With X̃ = Π ∧X1 ∧X2 ∧ · · · ∧Xm we get a solution to (the non-
relaxed version of) the abduction problem (P1):

X̃? ∧A0 ∗A1 ∗A2 ∗ · · ·Am � Π ∧A0 ∗B1 ∗B2 ∗ · · ·Bm

Proof. It suffices to show that Xi ∧Ai � Bi is valid for each i.

•s(y
′)

6•s(y)

���
��:

•s(x̃1) 6•s(x̃
2) XXX
XXy

•s(x̃
m)

��@@
“B1”

��@@
“B2”

��@@
“Bm”

. . .

(a)

•e
i
011

6
•e

i
111

��
��:

•ei001 XX
XXy

•e
i
101

��*•ei000 HHY •e
i
110HHY •e

i
010 ��*•ei100

��•
ai000

@I•
ai111

@I•
ai001

��•
ai110

��•
ai010

@I•
ai101

@I•
ai011

��•
ai100

(b)

Fig. 3. (a) The graph depicts (s, h), a model for A0 ∗B1 ∗B2 ∗ · · ·Bm. (b) The graph
depicts the part (s, hi) such that (s, hi) � Bi. Here, the following properties hold,
aiε1ε2ε3 =s(xiε1ε2ε3), and eiε1ε2ε3 =s(ziε1ε2ε3), and s(zi011) = s(y).

5.2 From the abduction problem (P1) to 3-SAT

Here we prove that our encoding is faithful.

Lemma 5.6 Given an X, a solution to the abduction problem (P1), we can
construct an assignment (α1, α2, . . . , αn) that makes all clauses C1,. . . ,Cm true.

10

Proof. Assume (s, h′) � A0 ∗A1 ∗A2 ∗ · · ·Am ∗X.
Then (s, h) � A0 ∗B1 ∗B2 ∗ · · ·Bm for a ‘sub-heap’ h, and h can be split in

heaps ĥ and h1, h2,. . . , hm, so that (s, ĥ) � y 7→ y′, and

(s, h1) � B1, (s, h2) � B2, . . . , (s, hm) � Bm,

respectively. The non-overlapping conditions provide that any path in each of
the hi is blocked by the ‘bottleneck’ A0 and hence cannot go beyond s(y). There-
fore, the whole h must be of the form shown in Fig. 3(a), and each of the hi
must be of the form shown in Fig. 3(b).

For every Bi, to comply with Π, these eight values s(ziε1ε2ε3) must be one-
to-one assigned to the eight non-terminal vertices in the tree in Fig. 3(b) (see
Lemma 5.2).

Hence for each of the “non-terminal” variables vi1, vi2,. . . , vi8 in Fig. 2(a),
X must impose equalities of the form

s(ziε1ε2ε3) = s(vik`).

In particular, s(zi
δi1δ

i
2δ

i
3
) = s(y) for some (δi1, δ

i
2, δ

i
3). To be consistent with

the third line of (1), Ci(δ
i
1, δ

i
2, δ

i
3) must be true. In addition to that, for distinct

i and j, we get
s(ziδi1δi2δi3

) = s(y) = s(zj
δj1δ

j
2δ

j
3

),

which makes these (δi1, δ
i
2, δ

i
3) and (δj1, δ

j
2, δ

j
3) compatible, in accordance with (2).

We assemble the desired assignment (α1, α2, . . . , αn) in the following way.
For any Boolean variable u occurring in some clause Ci we take the triple

(δi1, δ
i
2, δ

i
3) specified above and assign the corresponding δi` to u. The fact that all

(δi1, δ
i
2, δ

i
3) and (δj1, δ

j
2, δ

j
3) are compatible provides that our assignment procedure

is well-defined.

Theorem 5.7 The following problems are NP-complete, given formulae A, B:

(a) Determine if there is a solution X to the problem A ∗X? � B.
(b) Determine if there is a solution X to the problem A ∗X? � B ∗ true.
(c) Determine if there is a solution X to the problem A ∗X? � B ∗ true

in the case where the spatial part of A uses only 7→-subformulae, and the models
are confined to the heaps the length of any acyclic path in which is bounded by 5
(even if the spatial part of X is supposed to be the trivial emp).

Proof. It follows from Lemmas 5.5 and 5.6, Theorem 4.1, and the fact that the
tree height in Fig. 3(a) is bounded by 5.

Remark 5.8 It might seem that NP-hardness for rSAP(7→, ls) should neces-
sarily use lists of unbounded length. But, our encoding exploits only list segments
of length no more than 5.

Remark 5.9 By Theorem 5.7, any solving algorithm running in polynomial
time is likely to be incomplete. Consider, for instance, the abduction problem

x 7→ y ∗ y 7→ z ∗ w 7→ y ∗X? � ls(x, a) ∗ ls(w, a) ∗ true.
There is a solution, namely, y = a ∧ emp. However, the polynomial-time algo-
rithm presented in [6] would stop without producing a solution, hence the in-
completeness of that algorithm.

11

6 NP-completeness and PTIME results for 7→ fragments

We have seen that the abduction problem for symbolic heaps is NP-complete
in general. In this section we consider a restricted collection of formulae, which
contain 7→ but not ls. Such formulae occur often in program analysis, and form
an important sub-case of the general problem. Here we find a perhaps surprising
phenomenon: the general problem SAP(7→) is NP-complete, but the ‘relaxed’
problem rSAP(7→) can be solved in polynomial time. The relaxed problem,
which has ∗true in the consequent, is relevant to program analysis (and is used
in the Abductor tool), and thus the polynomial case is of practical importance.

6.1 SAP(7→) is NP-complete

Here, we show NP-hardness of SAP(7→) by reducing from the 3-partition prob-
lem [15]. The intuitions behind this reduction are as follows. (a) We coerce the
abduction solution, if it exists, to be a conjunction of equalities, with emp as
the spatial part; here the absence of true in the consequent is crucial. (b) The
separating conjunction enables us to specify that distinct parts of the antecedent
must be matched, via equalities, to distinct parts of the consequent.

Definition 6.1 (reduction) Given the 3-partition problem:

Given an integer bound b and a set of 3m integers s1, s2,. . . , s3m, strictly
between b/4 and b/2, decide if these numbers can be partitioned into
triples (si1 , si2 , si3) so that si1 +si2 +si3 = b.

the problem we consider is to find an X, a solution to the abduction problem

A1 ∗ · · · ∗Am ∗X? � Π ∧B1 ∗ · · · ∗B3m ∗ C1 ∗ · · · ∗ Cm (P2)

where Aj , Bi, Ck, and Π are defined as follows, here j and k range from 1 to m,
and i ranges from 1 to 3m (cf. Fig. 4):

Aj = xj1 7→ x̃j ∗ xj2 7→ x̃j ∗ · · · ∗ xjb 7→ x̃j ∗ x̃j 7→ y
Bi = ui1 7→ ũi ∗ ui2 7→ ũi ∗ · · · ∗ uisi 7→ ũi

Ck = wk 7→ y, and Π consists of all disequalities of the form y 6=xj` , y 6= x̃j ,

ũi 6=xj` , ũ
i 6=y, and wk 6=xj` .

Aj
y

x̃j

xj
1 xj

b
· · ·

Bi

ũi

ui
1 ui

si
· · ·

Ck
y

wk

Fig. 4. The formulae used in Definition 6.1.

6.1.1 From 3-partition to the abduction problem (P2)

Here we transform any solution to the 3-partition problem into a solution X̃ to
the abduction problem (P2).
Suppose that for any j, s3j−2+s3j−1+s3j = b.

First, we take Π as X̃ and add to it all equalities of the form

ũ3j−2 = ũ3j−1 = ũ3j= x̃j=wj .

12

For each j, we include in X̃ all equalities of the form

(xj1 =u3j−21), . . . , (xj`= tj(x
j
`)), . . . , (xjb=u3js3j)

where tj is a bijection tj between the sets {xj1, .., xjb}
and {u3j−21 , .., u3j−2s3j−2

, u3j−11 , .., u3j−1s3j−1
, u3j1 , .., u

3j
s3j}.

Lemma 6.2 X̃ ∧Aj � B3j−2 ∗B3j−1 ∗B3j ∗ Cj is valid for every j. Hence X̃
is a solution to the problem (P2).

6.1.2 From the abduction problem (P2) to 3-partition
Here we prove that our encoding is faithful.

Lemma 6.3 Given an X, a solution to (P2), we can construct a solution to the
related 3-partition problem.

Proof. We suppose that
∑3m
i=1 si = mb.

Assume (s, h) � A1 ∗A2 ∗ · · ·Am ∗X.
Then h can be split in heaps h1, h2,. . . , hm, and h′, so that (s, h1) � A1,

(s, h2) � A2,. . . , (s, hm) � Am, and (s, h′) � X, respectively.
More precisely, each hj is of the form

bj bj · · · bj s(y)

6 6 666 6 6
s(xj1) s(xj2) · · · s(xjb) bj

where bj=s(x̃j). Notice that hj can be uniquely identified by bj .
Because of (P2), (s, h) � B1 ∗ · · · ∗B3m ∗ C1 ∗ · · ·Cm.
The left-hand side of (P2) indicates the size of h as m(b+1) plus the size

of h′. The right-hand side of (P2) shows that the size of h is exactly m(b+1).
Bringing all together, we conclude that h′ is the empty heap.

Let fi be a part of h such that (s, fi) � Ci, and gi be a part of h such that
(s, gi) � Bi. To comply with Π, every s(wk) must be one-to-one assigned to one
of these m points b1,. . . , bm, and every s(ũi) must be assigned to one of these
b1,. . . , bm, as well. The effect is that each hj is the exact composition of a one-
cell heap fi′ and heaps gj1 , gj2 ,. . . , gj` , whose domains are disjoint, and hence
1+sj1 +sj2 +· · ·+sj` = b+1, which provides that `=3 and thereby the desired
instance of the 3-partition problem.

Theorem 6.4 The following problems are NP-complete:

(a) Given formulae A and B whose spatial parts use only 7→-subformulae,
determine if there is a solution X to the abduction problem A ∗X? � B.

(b) Given formulae A and B whose spatial parts use only 7→-subformulae,
determine if there is a solution X to the abduction problem A ∗X? � B in the
case where the models are confined to the heaps the length of any acyclic path in
which is bounded by 2 (even if the spatial part of X is supposed to be emp).

Proof. It follows from Lemmas 6.2 and 6.3 and Theorem 4.1, and the fact that
the longest path in hj is of length 2.

13

6.2 rSAP(7→) is in PTIME

We will assume that all formulae in this subsection contain no list predicates,
and make no more mention of this fact. We will also use the notation alloc(A) to
denote the set of variables x such that there is an L-value y in A and A � x = y.

An algorithm which constructs a solution for A ∗X? � B ∗ true if one exists
or fails if there is no solution, is as follows. We check the consistency of the
pure consequences of A and B and return false if they are not consistent. Then
we transform the problem into one of the form A′ ∗ X? � Σ ∗ true, i.e., the
consequent has no pure part, while guaranteeing that the two problem are in a
precise sense equivalent. Next we subtract 7→-predicates from A′ and Σ that have
the same L-value. This step may also generate requirements (equalities) that the
solution must entail. Finally we show that if this step cannot be repeated any
more, then A′ ∗Σ is consistent and therefore Σ is a solution. We then transform
this solution back to one for the original abduction problem.

Lemma 6.5 The abduction problem A∗X? � Π∧Σ has a solution if and only if
(Π∧A)∗X? � Σ has a solution. Moreover, if X is a solution for (Π∧A)∗X? � Σ,
then Π ∧X is a solution for A ∗X? � Π ∧Σ.

Thus we can concentrate on instances where the consequent has no pure part.

Lemma 6.6 The following conjunctions are equivalent:


A consistent
A � x = y ∧ w = z ∧B
x /∈ alloc(A)



 ⇐⇒




A � x = y
A ∗ x 7→ w consistent
A ∗ x 7→ w � B ∗ y 7→ z





Proof. Left-to-right: The entailment A ∗ x 7→ w � B ∗ y 7→ z follows by
∗-introduction. The consistency of A∗x 7→ w follows easily by an argument that
whenever x /∈ alloc(C) for some consistent C, there exists a model (s, h) of C
that does not include s(x) in the domain of h.

Right-to-left: since A ∗x 7→ w is consistent then so is A. It is also easy to see
that if A 2 w = z then A ∧ w 6= z is consistent, thus there exist a countermodel
for A∗x 7→ w � B∗y 7→ z where the cell at address s(x) contains a value c 6= s(z).
Also, from the assumption of consistency trivially follows that x /∈ alloc(A).

Let A ≡ E ∧A′ where E are the equalities appearing in A. Then,

A ∗ x 7→ w � B ∗ y 7→ z =⇒ A′[E] ∗ (x 7→ w)[E] � B[E] ∗ (y 7→ z)[E]

where the [E] notation indicates substitution through the equalities in E. Let
a ≡ x[E] and b ≡ w[E]. Then, we can derive

A′[E] ∗ a 7→ b � B[E] ∗ a 7→ b.

Let A′′ ∗ a 7→ b be the explicit, equivalent, version of A′[E] ∗ a 7→ b. Then it
can be shown that A′′ ∗ a 7→ b � B[E] ∗ a 7→ b implies A′′ � B[E]. Thus,
E ∧A′′ � E ∧B[E] and, by the substitution rule, A � B.

Lemma 6.7 Suppose A and Σ are such that (a) there are variables x,y such
than x ∈ alloc(A), y ∈ alloc(Σ) and A � x = w, and (b) there are no distinct
predicates x 7→ y, w 7→ z in Σ for which A � x = w. Then A ∗Σ is consistent.

14

Theorem 6.8 (rSAP(7→) is in PTIME) There is a polytime algorithm that
finds a solution for A ∗X? � B ∗ true, or answers no otherwise.

Proof. Let B ≡ Π∧Σ. If Π∧A is inconsistent then clearly there is no solution,
and we can check this in polynomial time.

The abduction problem (Π∧A)∗X? � Σ ∗true has a solution iff the original
one has and we know how to transform a solution of the former to one of the
latter through Lemma 6.5. Thus from now on we solve (Π ∧A) ∗X? � Σ ∗true.

We repeatedly subtract the 7→ predicates from antecedent and consequent for
which the rule in Lemma 6.6 applies, to obtain an abduction problem with the
side condition that certain variables may not appear as L-values in the solution.

When this is no longer possible we check the antecedent for consistency, as
it is possible that the equalities introduced through this step contradict some
disequality. For example, y 6= w ∧ x 7→ y ∗X? � x 7→ w ∗ true.

Ultimately, we will arrive at an abduction problem (Π ′∧Σ′)∗X? � Σ′′∗true
which satisfies the conditions of Lemma 6.7. In this case, Σ′′ is a solution as
(Π ′ ∧Σ′) ∗Σ′′ is consistent, and trivially, (Π ′ ∧Σ′) ∗Σ′′ � Σ′′ ∗ true.

Thus we return Π ′ ∧Σ′′ as the solution for the original problem.

Remark 6.9 This result may seem surprising as rSAP(7→, ls) and SAP(7→)
are both NP-complete.

To illustrate the differences between rSAP(7→) and rSAP(7→, ls) that allow
this divergence, we consider the two abduction problems.

A ∗ x 7→ a1 ∗ a1 7→ a2 ∗ · · · ∗ ak−1 7→ ak ∗X? � x 7→ y ∗B ∗ true (3)

A ∗ x 7→ a1 ∗ a1 7→ a2 ∗ · · · ∗ ak−1 7→ ak ∗X? � ls(x, y) ∗B ∗ true (4)

One of the ingredients that makes the algorithm in Theorem 6.8 polynomial-
time is the fact that for any solution X to the abduction problem (3), there is
no other choice but to take y as a1. On the other hand, in problem (4), y can
be made equal to a1, to a2,. . . , to ak, or something else. It is this phenomenon
we exploit (even with k≤5) to achieve NP-hardness in Theorem 5.7.

In the case of rSAP(7→) and SAP(7→) another factor is at play. Consider,
e.g., the two abduction problems, where x1,. . . ,xk are not L-values in the LHS:

A ∗ a1 7→ b1 ∗ . . . ∗ ak 7→ bk ∗X? � B ∗ x1 7→ y1 ∗ . . . ∗ xk 7→ yk (5)

A ∗ a1 7→ b1 ∗ . . . ∗ ak 7→ bk ∗X? � B ∗ x1 7→ y1 ∗ . . . ∗ xk 7→ yk ∗ true (6)

To find a solution to (5), because of precision (Remark 2.3), x1,. . . ,xk must
be assigned to L-values in the left-hand side. We have at least k! possibilities
and each may need to be checked (this point lies behind the NP-hardness in
Theorem 6.4).

In contrast, to find a solution to (6) we can opt for the most “conserva-
tive” candidate solution leaving x1,. . . ,xk unassigned, or in other words, we can
include x1 7→ y1 ∗ . . . ∗ xk 7→ yk as a part of a candidate solution X, since

a1 7→ b1 ∗ . . . ∗ ak 7→ bk ∗X � x1 7→ y1 ∗ . . . ∗ xk 7→ yk ∗ true.
If such an X is not a solution then problem (6) has no solution at all.

These two observations are among the crucial points behind the design of
the polynomial-time algorithm in Theorem 6.8.

15

7 Conclusion

Our results are summarized in the table below.

SAP rSAP
{7→} NP-complete in PTIME
{7→, ls} NP-complete NP-complete

We have studied the complexity of abduction for certain logical formulae rep-
resentative of those used in program analysis for the heap. Naturally, practical
program analysis tools (e.g., Abductor, SLAyer, Infer, Xisa) use more com-
plicated predicates in order to be able to deal with examples arising in practice.
For example, to analyze a particular device driver a formula was needed corre-
sponding to ‘five cyclic linked lists sharing a common header node, where three
of the cyclic lists have nested acyclic sublists’ [1].

The fragment we consider is a basic core used in program analysis. All of
the separation logic-based analyses use at least a points-to and a list segment
predicate. So our lower bounds likely carry over to richer languages used in tools.

Furthermore, the work here could have practical applications. The tools use
abduction procedures that are incomplete but the ideas here can be used to im-
mediately obtain procedures that are less incomplete (even when the fragment of
logic they are using is not known to be decidable). Further, the polynomial-time
sub-cases we identified correspond to cases that do frequently arise in practice.
For example, when the Abductor tool was run on an IMAP server of around
230k LOC [11], it found consistent pre/post specs for 1150 out of 1654 pro-
cedures, and only 37 (or around 3%) of the successfully analyzed procedures
had specifications involving list segments. The remainder (97% of the success-
fully analyzed procedures, or 67% of all procedures) had specs lying within the
7→-fragment which has a polynomial-time relaxed abduction problem (and the
tool uses the relaxed problem). Furthermore, the 37 specifications involving list
segments did not include any assertions with more than one list predicate. In-
deed, we might hypothesize that in real-world programs one would only rarely
encounter a single procedure that traverses a large number of distinct data struc-
tures, and having a variable number of list segment predicates was crucial in our
NP-hardness argument. Because of these considerations, we expect that the worst
cases of the separated abduction problem can often be avoided in practice.

Acknowledgements. This research was suppored by funding from the EP-
SRC. O’Hearn also acknowledges the support of a Royal Society Wolfson Re-
search Merit award and a gift from Microsoft Research.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and
H. Yang. Shape analysis of composite data structures. In 19th CAV, 2007.

2. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic execution with separation
logic. In 3rd APLAS, Springer LNCS 3780, 2005.

3. N. Bjørner and J. Hendrix. Linear functional fixed-points. In 21st CAV, Springer
LNCS 5643, pages 124–139, 2009.

16

4. J. Brotherston and M.I. Kanovich. Undecidability of propositional separation logic
and its neighbours. In LICS, pages 130–139. IEEE Computer Society, 2010.

5. C. Calcagno and D. Distefano. Infer: an automatic program veriifier for memory
safety of C programs. To appear in 3rd NASA Formal Methods Symposium, 2011.

6. C. Calcagno, D. Distefano, P.W. O’Hearn, and H. Yang. Compositional shape
analysis by means of bi-abduction. In 36th POPL, pages 289–300, 2009.

7. C. Calcagno, D. Distefano, and V. Vafeiadis. Bi-abductive resource invariant syn-
thesis. In APLAS, pages 259–274, 2009.

8. C. Calcagno, P.W. O’Hearn, and H. Yang. Local action and abstract separation
logic. In LICS, 2007.

9. P. Cousot and R. Cousot. Modular static program analysis. 11th Conference of
Compiler Construction, Springer LNCS 2304. pp159-178, 2002.

10. N. Creignou and B. Zanuttini. A complete classification of the complexity of
propositional abduction. SIAM J. Comput., 36(1):207–229, 2006.

11. D. Distefano. Attacking large industrial code with bi-abductive inference. In 14th
FMICS, Springer LNCS 5825, pages 1–8, 2009.

12. D. Distefano and I.Filipovic. Memory leaks detection in java by bi-abductive
inference. In 13th FASE, Springer LNCS 6013, pages 278–292, 2010.

13. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. In TACAS’06, 2006.

14. T. Eiter and G. Gottlob. The complexity of logic-based abduction. J. ACM,
42(1):3–42, 1995.

15. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

16. R. Giacobazzi. Abductive analysis of modular logic programs. In Proc. of the 1994
International Logic Prog. Symp., pages 377–392. The MIT Press, 1994.

17. B. Gulavani, S. Chakraborty, G. Ramalingam, and A. Nori. Bottom-up shape
analysis. In Static Analysis, volume 5673 of LCNS, pages 188–204. Springer, 2009.

18. S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified
logical domains. In 35th POPL, pages 235–246, 2008.

19. H.Yang, O.Lee, J.Berdine, C.Calcagno, B.Cook, D.Distefano, and P.O’Hearn. Scal-
able shape analysis for systems code. In 20th CAV, Springer LNCS 5123, 2008.

20. S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In Proceedings of the 28th POPL, pages 14–26, 2001.

21. S.K. Lahiri and S. Qadeer. Back to the future: revisiting precise program verifica-
tion using SMT solvers. In 35th POPL, pages 171–182, 2008.

22. C. Luo, F. Craciun, S. Qin, G. He, and W.-N. Chin. Verifying pointer safety for
programs with unknown calls. Journal of Symbolic Computation, 45(11):1163–
1183, 2010.

23. A. Möller and M.I. Schwartzbach. The pointer assertion logic engine. In 22nd
PLDI, pages 221–231, 2001.

24. G. Paul. Approaches to abductive reasoning: an overview. Artif. Intell. Rev.,
7(2):109–152, 1993.

25. C.S. Peirce. The collected papers of Charles Sanders Peirce. Harvard University
Press, 1958.

26. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM TOPLAS, 20(1):1–50, 1998.

27. G. Yorsh, A.M. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic of
reachable patterns in linked data-structures. J. Log. Algebr. Program., 73(1-2):111–
142, 2007.

17

	The Complexity of Abduction for Separated Heap Abstractions -.08in

