
Computing Minimal Changes of

Models of Systems

Nikos Gorogiannis

Supervisor: Mark D Ryan

A PhD thesis submitted to

the University of Birmingham

School of Computer Science

The University of Birmingham

June 2003

Abstract

Minimal change of models of systems is a concept connected to well-known
areas of the literature such as theory change and non-monotonic reasoning.
However, it seems that little work has been done on bringing together the
intuitions from these areas and implementing them in concrete case studies.

Already existing proposals from theory change may be used for min-
imally changing systems in a variety of ways. However, implementations
for these proposals are lacking. We address this gap by employing Binary
Decision Diagrams, and construct algorithms that compute these minimal
changes. The performance of these algorithms is studied theoretically. In
addition, they are used in an application, fault diagnosis of combinational
circuits. A case study is examined and benchmarks for the BDD algorithms
are obtained.

Furthermore, a specific kind of minimal change is proposed and studied,
one that extends expressiveness by using modal and temporal logics instead
of propositional logic. This method, minimal refinement, can be used for
providing refinements of a system that satisfy a given new requirement,
and exhibit as many behaviours of the original system as possible. We
then proceed to prove that minimal refinement has interesting theoretical
characteristics and that the related algorithmic problems are decidable.

iii

Contents

Contents 1

List of Definitions 3

List of Lemmas and Theorems 5

List of Figures 7

1 Introduction 9

1.1 Models of systems and their changes 9
1.2 Minimal change . 11
1.3 Outline of this thesis . 14
1.4 Published work . 18

2 Background 19

2.1 Theory change . 19
2.1.1 Belief revision as theory change 19
2.1.2 The AGM approach 20
2.1.3 Semantical approaches on theory change 22

2.2 Binary decision diagrams . 26
2.2.1 Definitions and basic results 26
2.2.2 Algorithms on binary decision diagrams 27
2.2.3 Expression syntax for BDDs 31
2.2.4 Upper bounds of BDD size and circuit implementations 34

2.3 Modal logic . 34
2.4 The logic ACTL . 37

3 Using BDDs to implement Theory Change Operators 41

3.1 Introduction . 41
3.2 Theory change operators as BDD algorithms 41

3.2.1 Revision defined by faithful assignment 42
3.2.2 Update defined by faithful assignment 43
3.2.3 Borgida’s operator . 44
3.2.4 Satoh’s operator . 47

1

2 CONTENTS

3.2.5 Dalal’s operator . 48
3.2.6 Winslett’s operator . 51

3.3 Fault diagnosis . 52
3.3.1 Fault diagnosis of boolean combinational circuits . . . 52
3.3.2 BDD formulation . 55
3.3.3 Implementation and experimental results 56

3.4 Related work . 62

4 Minimal refinement and Modal Logic 63
4.1 Introduction . 63
4.2 Minimal refinement in the modal case 65
4.3 M-Saturated models . 68
4.4 Finite models . 74
4.5 Related work . 80

5 Minimal refinement and Temporal Logic 81
5.1 Introduction . 81
5.2 Minimal refinement in the temporal case 82
5.3 Implementation and case study 86

6 Conclusions and Further Work 99
6.1 Implementations for theory change and fault diagnosis 99
6.2 Minimal refinement . 101

Bibliography 103

List of Definitions

1.3.1 The ordering ≤𝑀 . 16
1.3.2 Minimal refinement . 16
1.3.3 Stopperedness . 17
1.3.4 Non-triviality . 17
2.3.1 Kripke models . 35
2.3.2 Bisimulation . 36
2.3.3 Simulation . 37
2.4.1 The language ℒACTL . 37
2.4.2 Transition systems with fairness constraints 38
2.4.3 Satisfaction of ACTL formulae 39
2.4.4 Fair simulation . 40
4.3.1 M-saturation . 68
4.3.4 Taking disjuncts and ℒPU-consequence 70
4.4.2 A modified filtration . 75
5.2.2 The synchronous product construction 83
5.3.1 Sub-formulae and elementary formulae 87
5.3.2 The tableau construction . 88

3

4 LIST OF DEFINITIONS

List of Lemmas

and Theorems

2.1.1 Representation theorem for revisions [KM91] 24
2.1.2 Representation theorem for updates [KM92] 25
2.2.1 Circuit-based bounds on BDD sizes [McM93] 34
4.3.2 Simulation implies PU language inclusion 69
4.3.3 The effect of PU language inclusion 69
4.3.5 Exact satisfaction of a set of PU sentences 70
4.3.6 Non-triviality for MSAT . 70
4.3.7 Infima of restricted chains of m-saturated models 71
4.3.8 Zorn’s Lemma . 72
4.3.9 A slightly stronger version of Zorn’s lemma 72
4.3.10Stopperedness for MSAT . 73
4.4.1 Existence of functional simulations 74
4.4.3 Bounded-size intermediary models for *FIN 76
4.4.4 Non-triviality for FIN . 77
4.4.5 Stopperedness for FIN . 78
4.4.6 Decidability of minimality . 78
4.4.7 Computable representatives of *FIN 79
4.4.8 Decidability of reasoning about minimal models 79
5.2.1 Non-triviality for ACTL . 82
5.2.3 Fairness of paths in product structures [GL94] 83
5.2.4 Factors and products . 84
5.2.5 Existence of tableau constructions 85
5.2.6 A representative model of 𝑀 *FTSF 𝜑 85
5.2.7 Tableaus and conjunctions . 86

5

6 LIST OF LEMMAS AND THEOREMS

List of Figures

2.1 The decision tree and the BDD for 𝑥 ∨ 𝑦. The BDD for
((𝑝 ∨ 𝑞) ∧ 𝑟) ∨ 𝑠. 26

2.2 An ordering on models of the language {𝑝, 𝑞}, and its BDD. . 32

3.1 Circuit that computes 𝑁△𝐿 ̸⊂ 𝑁△𝑀 46
3.2 Circuit to decide |𝑀△𝐾| ≤ |𝑁△𝐿|. 50
3.3 A standard design for a full adder (left) and an 𝑛-bit adder

(right). 59
3.4 Average number of BDD nodes produced per diagnosis. . . . 61
3.5 Average time spent per diagnosis. 61

4.1 𝐸, an example Kripke model. 66
4.2 A chain of models that refine 𝐸 and satisfy 22¬𝑝. 66
4.3 𝑀 , the minimum of modFIN(22¬𝑝) with respect to ≤𝐸 67
4.4 𝐸, 𝑀 and a candidate model 𝑁 for modFIN(22¬𝑝), 𝐸 ←

𝑁 ←𝑀 and 𝑁 9𝑀 . 67

5.1 𝑀 × 𝜏 (𝜑) as the minimal model of 𝜑 with respect to ≤𝑀 . . . 85
5.2 A model of a process. 90
5.3 𝑀1, the asynchronous composition of two processes. 91
5.4 The tableau of AG(¬𝑐1 ∨ ¬𝑐2). 92
5.5 𝑀2, the composition of 𝑀1 and 𝜏 (AG(¬𝑐1 ∨ ¬𝑐2)). 92
5.6 𝜏 (liveness1) . 93
5.7 𝐶, the composition of 𝑀2, 𝜏 (liveness1) and 𝜏 (liveness2). . . . 94
5.8 𝐶, reformatted for readability. 94
5.9 𝐶 ′, the "second attempt" for the mutual exclusion protocol. . 95

7

8 LIST OF FIGURES

Chapter 1

Introduction

1.1 Models of systems and their changes

A model, in general, is something that hinges on the notion of representa-
tion : to say that something is a model of something else is to say that the
former somehow represents the latter. This quality of models, i.e. the ability
to represent other things, such as physical or even abstract entities, allows
us to examine and experiment with the models as if we were examining or
experimenting with the actual entities represented.

Perhaps that is why the notion of a model is such a pervasive concept in
science. Within science, models are used to represent the object of enquiry
while being expressed in a formal language that allows their manipulation
and examination. In Computer Science, models appear in diverse forms
and are used to represent and reason about a multitude of things such as
systems, programming languages and abstract mathematical structures.

The use of models for representing systems in Computer Science has
produced many successful cases where, by using structures expressed in
appropriate formalisms to represent actual systems, it has been possible to
understand and predict the relevant behaviours of the systems modelled.
Such examples include:

∙ Boolean circuits (also known as combinational circuits) are electronic
systems that are ubiquitous and have attracted a significant amount
of research. Their input-output behaviour can be effectively modelled
by formulae in propositional logic: the input signals are represented
by atomic variables, logical gates by the corresponding logical connec-
tives, and the output by the truth value of the formula.

Moreover, the reasoning capabilities a logical formalism (such as pro-
positional logic) offers allow us to prove facts about the system in
question. For example, the question of how two such systems will
behave when the outputs of one are connected to the inputs of the
other may be addressed. The ability to predict the ensuing behaviour

9

10 CHAPTER 1. INTRODUCTION

leads naturally to modular design methodologies: the designers can
focus on small manageable units that will be put together to assemble
a more complex but still manageable and predictable system.

∙ Another formalism which is extensively used to model systems is the
state transition system. Whenever the notion of state appears in the
abstraction of the system, or whenever the system under considera-
tion has a temporal behaviour we are interested in studying, then the
state transition system may be an appropriate formalism. Examples
of systems that have been modelled by this formalism include con-
troller systems such as the control-logic module of a vending machine
or an elevator, microprocessors and algorithms such as scheduling or
cryptographic protocols.

Again, this formalism lends itself directly to a logical approach, such
as modal logic [BdRV01, Che80] or temporal logic [BCM+90, CES86].
In this way, it is possible to check whether a system will satisfy a re-
quirement that has a non-trivial temporal character. Such a process
is a form of verification, i.e. the act of ascertaining beyond doubt
that a system has a particular property. Similarly, automatic veri-

fication refers to the process of verifying a system but by using an
automated, usually computer-assisted, method. Research in the area
of automatic verification has provided us with feasible methods for
checking automatically whether a state transition system satisfies a
requirement (see e.g. [CE81, BCM+90, McM93]). Therefore, systems
like the above-mentioned ones can be verified and debugged before
actually manufacturing an instance of them.

Systems may change or be changed over time. This may be the effect of
a deliberate action, such as the fitting of a new control-logic sub-module in a
vending machine, or it may be the result of forces outside our control, such
as a fault developing in a logical gate inside an electronic component. A
natural question arises, then, of whether we can apply the formalisms used
to model the systems in modelling these changes too. This would extend
our ability to reason about systems, by complementing the existing abilities
with that of reasoning about change.

Change, however, may also occur in the models themselves, without
reflecting some physical phenomenon. Such changes occur frequently when
models are used as designs. For example, during the process of designing a
system, and before that design is ever implemented, it may happen that a
shortcoming is diagnosed in the current stage. Then, the existing design is
changed to incorporate a work-around for the bug. Also, when incrementally
creating a model, it may be desirable to produce successive designs that
incorporate an increasing subset of the required properties.

In the examples above, such changes may happen:

1.2. MINIMAL CHANGE 11

∙ When a logical gate in a combinational circuit develops a fault, its
input-output behaviour changes so that the output becomes partially
or totally independent of the input: for example, the output may
become a constant, in which case the faulty gate is said to be ‘stuck-
at-𝑥’ where 𝑥 is the output value; or, the output may vary with no
restriction.

When using formulae of propositional logic to model circuits, such
faults are readily represented by substituting the corresponding sub-
formula with an appropriate logical constant, in the case of stuck-at-𝑥
faults, or a new propositional variable, in the case of unrestricted be-
haviour.

In this way, we can re-use the reasoning abilities of propositional cal-
culus in order to answer questions of the form “what are the possible
outputs given a specific input and the fact that gate 𝑦 is stuck-at-1?”

Examples of changes in state transition-based modelling include:

∙ The act of adding a new component to an existing configuration of a
system is called feature integration. This process refers to the physi-
cal alteration of a system such as the addition of a physical component
as well as to non-physical alterations such as the addition of a soft-
ware ‘plug-in’. The corresponding field of research studies, among
other things, the ensuing behavioural changes. One example of such
work is due to Plath and Ryan [PR99, PR01], where feature inte-
gration is formalised as a disciplined alteration of the original state
transition system. Systems examined under this approach include the
logic controller of an elevator and the telephone system.

∙ When designing a system, high-level abstractions of the system are
usually employed in order to ease verification. It may be desirable,
at some point, to derive a more concrete model of the system, one
that implements the existing model. The relation of implementation
between the original model and the derived one is often explained in
terms of behaviour-containment: that all the behaviours exhibited by
the derived model are exhibited (or allowed) in the original one. This
relation is called refinement [AL91] and usually entails some kind of
language inclusion, depending on the logic used.

1.2 Minimal change

Sometimes, in the study of these types of change, it is desirable to define a
measure of how significant or detrimental a specific change is. This measure
may be expressible as an ‘absolute’ function that takes two models and
returns a measure of how different they are. More generally, it may be

12 CHAPTER 1. INTRODUCTION

expressible as a ‘relative’ one, in the form of an ordering ≤ on models
induced by the starting model: given models 𝐴, 𝐵 and 𝐶, 𝐴 ≤𝐶 𝐵 means
that 𝐴 is at most as different from 𝐶 than 𝐵 is from 𝐶.

However this measure of difference may be expressed, it allows for the
ordering of models in a such a way so that questions of the form “given a
model 𝐴 and a set of models 𝑆, which models of 𝑆 are the ones that differ
the least from 𝐴?” become conceptually tractable. The underlying concept
in this question is the one of minimal change.

The process of minimally changing a model of a system is not an un-
common one. Examples of its use follow.

Fault diagnosis

As mentioned earlier, parts of a system may develop faults through time.
These faults eventually may affect the behaviour of the system in an unde-
sirable way. In many cases, it is possible to repair the system by replacing
some of its components. Therefore, we need a method which, on the basis
of information about the behaviour of the system, would identify the faulty
parts. This process is called fault diagnosis [Rei87].

Testing the system, i.e. feeding it with many or all the possible inputs
and observing its behaviour may not be an option, for example, when these
possible inputs are just too many or when the action of testing itself might
adversely affect the system. In these cases, the observed behavioural de-
viation of the system can be the only information available. Hence, the
fault diagnosis algorithm used should accept a description of the system
and whatever behavioural observations of the system are available, and on
the basis of those produce a diagnosis.

In the case of boolean circuits, such a description of the system is the
graph of the circuit, which provides information on the type of each gate
and the connections between inputs and outputs of the gates. The evidence
of abnormal behaviour would be in the form of input and output bit-vectors,
where the outputs are not the expected ones.

In this framework, a measure of the impact of faults developing in the
system would be related to the set of the faulty gates. This is necessary
because there is always at least one trivial diagnosis which is of no interest:
that all components are faulty. One possibility is to identify this measure
with the cardinality of the set of faulty gates; in this case a fault diagnosis
would present us with a set of gates which, if taken as faulty, will explain the
discrepancy between the observed and the expected behaviour, and which
is the smallest such set. Alternatively, this measure can be taken to be the
set of faulty gates itself, and the ordering of this measure as set-inclusion.
In this way, the fault diagnosis algorithm should compute a set of sets of
faulty gates that explain the observed deviant behaviour and are minimal
with respect to set-inclusion.

1.2. MINIMAL CHANGE 13

Minimal change is central in this process in that we begin from the
assumption that the system is functioning correctly, and, in the face of an
observation implying a faulty system, we change minimally the assumption
so that it explains the observed behaviour, thus arriving at a diagnosis.

Feature integration

Features, in contrast to complete systems, are not complete specifications of
the behaviour of the system. They specify a part of the system’s behaviour,
and that is the reason why they can be thought of as add-on components.
This demonstrates further the fact that integrating a feature with a base
system is not a trivial process. It may give rise to unintended effects, a
phenomenon known as feature interaction. This occurs when the original
system and an add-on component (or two add-on components) combine
their behaviours in an unpredicted and usually undesired way. Therefore,
it is necessary to be able to reason about the results of such an integration.

The link between the notion of minimal change and feature integration
can be summarised as follows. In the set of models of all possible systems,
the base system is a single point. The feature, on the contrary, as an incom-
plete behavioural specification, can be represented by a set of models, those
which exhibit the behaviour the feature prescribes. Feature integration, of
course, does not yield such a set of models. Instead, it returns the model
that admits the feature’s behaviour and is closest to the base system, un-
der some notion of closeness which is appropriate to the application domain.
This view of feature integration is further evidence of its non-monotonic na-
ture. Another link to minimal change is presented in an approach to feature
integration by Harris and Ryan [HR02], whereby a specific method of feature
integration is shown to be a kind of theory change.

Minimal refinement

Suppose that we have constructed an access control system for a database
system. To aid in its verification, an abstraction of this system has been de-
signed in the form of a state transition system. Each possible computation
path exhibited by the transition system corresponds to an allowable trans-
action with the database system. At some point, a further rule is imposed
so that, for example, a certain kind of transaction is necessarily followed by
another. This rule is to be applied to the original system as an add-on and,
as such, it is preferable not to re-design the abstraction from scratch, but
re-use the initial transition system as a starting point. Since the original
system already circumscribes the allowable behaviours, what we are looking
for is a refinement of that model that, in addition, satisfies the new rule.

In an alternative scenario, imagine that a model of a system has been
constructed and verified with a model checker. It is now desirable to produce

14 CHAPTER 1. INTRODUCTION

a version of this model which is more low-level so that it can be used for
the automatic construction of code that implements this system. The new,
more ‘concrete’ version of the system may contain implementation-level de-
tails and states. Again, we are interested in producing this refined version
automatically, while preserving the behaviours of the specification that are
admissible by the implementation mechanisms present in the result.

In both these examples, a refinement of a model is sought. However,
refining a model yields an implementation, or a more ‘concrete’ version of
it, but not necessarily a useful one: depending on the formalism used, it is
very frequently the case that trivial models exist that refine almost every
other model (specifically, those that exhibit very few, if any, behaviours).
More importantly, we are interested in refining the original model but only
so much as is necessary in order to satisfy a given guiding property. In this
way, behaviours of the original system are only sacrificed if necessary.

Therefore, refinement can be used to order the set of models that re-
fine the original one and satisfy the given requirement. Then, the desired
ones are the members of this set that are minimal with respect to the re-
finement ordering. We call this type of minimal change, exemplified above,
minimal refinement. This process can be used whenever the designer has
a model that circumscribes the allowed behaviours of the system. Then, a
new property can be applied, producing a new model that satisfies the new
requirement, refines the initial model and exhibits as many of its behaviours
as possible.

1.3 Outline of this thesis

The notion of minimal change is not new; the areas of theory change and
non-monotonic reasoning have used it extensively. However, these areas are
focused on issues such as the evolution of an agent’s beliefs or the non-
monotonic nature of the human way of reasoning; they rarely use minimal
change in studying the processes related to changing and developing sys-
tems. Moreover, there is a lack of research oriented towards computation:
the issues of decidability of decision procedures, their complexity and pos-
sible implementations are rarely addressed. The main aim of this thesis,
then, is to build on the notion of minimal change of models of systems in
concrete case-studies while addressing practical issues such as decidability,
complexity and implementations.

Chapter 2: review of related literature

In chapter 2, the literature from the field of theory change that is related
to the results in this thesis is presented. A brief introduction to Binary
Decision Diagrams, a data structure used extensively in chapter 3, is also

1.3. OUTLINE OF THIS THESIS 15

given. A review of basic definitions and facts about modal and temporal
logic (ACTL) is included, in anticipation of chapters 4 and 5.

Chapter 3: implementations of theory change operators from

the literature

In this chapter, minimal change is first examined from the perspective of
theory change. The focus is placed on revisions and updates, the two main
types of theory change. We develop algorithms based on a data structure
known as the Binary Decision Diagram that compute general revisions and
updates, when the object language is the propositional calculus.

Subsequently, we examine some well-known proposals in the literature
of theory change [Bor85, Sat88, Dal88, Win88]. These proposals consist in
specific, alternative ways of performing minimal change, again with proposi-
tional logic as the base language. Algorithms that implement these specific
proposals are, then, developed. Some insight into the complexity of the al-
gorithms is also gained by producing upper bounds for the time complexity
and for the sizes of the data structures used.

Finally, a framework for fault diagnosis of combinational circuits is for-
mulated. The algorithms developed previously are, then, put to use in a
case-study of fault diagnosis of an 𝑛-bit adder. From this, empirical data
on performance are gathered and benchmarks are produced.

Chapters 4 and 5: minimal refinement

While the previously mentioned types of minimal change are interesting in
their own right, propositional logic as the specification language leaves a lot
to be desired. Although it definitely simplifies questions of decidability, its
lack of expressiveness renders it a rather cumbersome and weak language for
reasoning about systems. Modal and temporal languages, on the other hand,
retain desirable characteristics related to the decidability of several decision
problems but also extend expressiveness in a non-trivial way. Therefore, it
would be highly rewarding to study minimal change in a more expressive,
yet still computationally viable, framework.

However, beyond the extremely general and logic-agnostic formulations
of minimal change found in the theory change literature, there is very lit-
tle research done on such issues with a modal or temporal object language
in mind. This approach will not be reproduced here: instead of trying to
propose a general meta-theory for minimal change for modal or temporal
languages, a specific type of minimal change, useful in the context of auto-
matic verification and design, will be formulated, studied and implemented.

The operation of minimal change studied here is minimal refinement. Its
exposition in the above examples is under-specified in that concepts such
as behaviour, model and requirement have not been formally defined. For

16 CHAPTER 1. INTRODUCTION

the purposes of introduction, general definitions will be used to present the
idea while specific instances of this framework are formally developed fully
in chapters 4 and 5.

Let ℒ and ℳ be sets, the set of formulae and the set of models, re-
spectively, and |=⊆ℳ×ℒ a satisfaction relation. The class of models that
satisfies a formula 𝜑 will be denoted by mod(𝜑). Let ←⊆ℳ×ℳ be a pre-
order1 on models that represents refinement. We will write 𝑀 ← 𝑁 when
𝑁 refines 𝑀 , and 𝑀 � 𝑁 when 𝑀,𝑁 are refinement-equivalent. Then, the
following ordering may be defined.

Definition 1.3.1 (The ordering ≤𝑀)
Let 𝑀,𝐴,𝐵 be models. Then, 𝐴 ≤𝑀 𝐵 iff

1. 𝑀 ← 𝐴← 𝐵 or

2. 𝑀 ← 𝐴 but 𝑀 8 𝐵 or

3. 𝐴� 𝐵. 2

The aim of this ordering is to provide a measure of how ‘concrete’ is a
refinement of a model: if 𝐴 <𝑀 𝐵 then 𝐴 refines 𝑀 and either 𝐵 refines 𝐴
(while the converse is not true), or 𝐵 does not refine 𝑀 . In the first case
𝐴 is a less ‘concrete’ refinement of 𝑀 than 𝐵 is. The same applies in the
second case but in a trivial sense.

It is not hard to see that this ordering is reflexive and transitive. As
such, it is a preorder. Using ≤𝑀 , minimal refinement may now be defined
in a formal way.

Definition 1.3.2 (Minimal refinement)
Let 𝑀 be a model in ℳ and 𝜑 ∈ ℒ a formula. We define the minimal
refinement operation * as

𝑀 * 𝜑 = min
≤𝑀

(mod(𝜑))
2

This definition resembles a particular type of theory change known as update
[KM92], in that it is a point-wise definition, i.e. the ordering depends on a
model rather than an arbitrary theory as is usual in the case of revisions
[KM91].

Given such an operation, several questions arise.

∙ Generally, the existence of minimal elements within a set with respect
to an ordering is not guaranteed and, as such, it is not obvious that a
minimal refinement will yield any models. Therefore, before studying
further a particular instantiation of this framework, the conditions
that guarantee the existence of minimal models must be investigated.

1I.e., a transitive and reflexive relation.

1.3. OUTLINE OF THIS THESIS 17

In order to address this issue, we employ the notion of stopperedness,
a concept known from the non-monotonic reasoning literature, which
is related (but not equivalent) to that of well-foundedness.

Definition 1.3.3 (Stopperedness)
An ordering ≤ overℳ is stoppered over a collection of sets of models
𝒞 ⊆ 2ℳ iff for each 𝑋 ∈ 𝒞 and any model 𝐴 ∈ 𝑋 there exists a model
𝐵 ∈ 𝑋 such that 𝐵 ≤ 𝐴 and 𝐵 is ≤-minimal in 𝑋. 2

∙ It may be the case that, for a particular choice of a model 𝑀 and
a formula 𝜑, there is no model of 𝜑 that refines 𝑀 . In that case
≤𝑀 will be flat inside mod(𝜑) in the sense that for any two models
𝐴,𝐵 ∈ mod(𝜑), 𝐴 ≤𝑀 𝐵 iff 𝐴 � 𝐵. As a result, 𝑀 * 𝜑 = mod(𝜑).
We call this case trivial:

Definition 1.3.4 (Non-triviality)
Let𝑀 be a model inℳ and 𝜑 ∈ ℒ a formula. We call𝑀 *𝜑 non-trivial
iff there exists a model 𝑁 such that 𝑀 ← 𝑁 and 𝑁 |= 𝜑. 2

Thus, it is of interest to know the conditions that guarantee non-
triviality of the results of the operation.

∙ Suppose that we have designed a model 𝑀 that we want to minimally
refine with a new property 𝜑. Since it is not guaranteed that a model of
𝜑 that refines 𝑀 exists, before applying minimal refinement we would
like to know whether 𝑀 * 𝜑 is trivial or not. Is there an algorithm
that can compute this and under which conditions?

∙ Having secured the non-triviality of𝑀 *𝜑 and assuming stopperedness
holds, the goal, of course, is to compute the models that minimally
refine 𝑀 under 𝜑. Intrinsic to this problem is the existence of an
algorithm that, given two models 𝑀 and 𝑁 and a formula 𝜑, decides
the minimality of 𝑁 with respect to 𝑀 and 𝜑, i.e. whether 𝑁 ∈𝑀 *𝜑
or not.

∙ Lastly, in some situations it is desirable to be able to answer condi-
tional queries about the minimal refinement. For example, we may
want to know whether a given model 𝑀 , when minimally refined by
𝜑, will entail a certain property 𝜓. This amounts to the existence of
an algorithm for answering queries of the form 𝑀 * 𝜑 |= 𝜓.

In chapter 4 these questions are addressed with transition systems as
models, simulation as refinement and modal logic as the language used to
phrase requirements. They are also investigated in chapter 5 where state
transition systems with fairness constraints serve as models, fair simulation

as refinement and the logic of requirements is ACTL.

18 CHAPTER 1. INTRODUCTION

Chapter 6: conclusions and further work

Finally, we conclude and summarise the possible avenues for extending the
work presented in this thesis.

1.4 Published work

The results on the implementation of theory change operators with Binary
Decision Diagrams appearing in chapter 3 have been published in [GR02a].
The definitions behind minimal refinement and a significant part of the
results presented in chapter 4 have appeared in [GR02b].

Chapter 2

Background

2.1 Theory change

2.1.1 Belief revision as theory change

Theory change is perhaps the field of research that has studied most closely
the notion of minimal change (as used in this thesis). It is a field that draws
from the area of philosophical logic, artificial intelligence and non-monotonic
reasoning, among others. Its object, as the name suggests, is the study of
how to revise theories in the presence of tokens of information of a different
status than the theories themselves.

The term ‘theory’ accepts many different interpretations. One of those is,
for example, scientific theories: their evolution under contradicting knowl-
edge drawn from experiments has been the object of study from philoso-
phers. Another interpretation, and one of the most known and most stud-
ied is belief. The prototypical example of this approach is an agent holding
beliefs about its world, who comes to learn a piece of information that is in-
consistent with its previous beliefs. The process undertaken to reconcile the
old belief with the new, more accurate, information is called belief revision.

This process can be reformulated more precisely as follows. There is
(some kind of) an agent that is in an epistemic state, which represents
its beliefs about the world. The epistemic state need not be true or, in
the logics-of-knowledge parlance, represents belief rather than knowledge.
A new piece of information is presented to the agent through some other
means, and is believed to be true about the world in preference to the agent’s
current epistemic state. Thus, the epistemic state needs to be revised, or
in other words, to be replaced by another one that includes the “new piece
of information” and is, in a sense to be defined, as close to the original as
possible.

In form, the object of the study of belief revision is an operator * of the
type

* : ℰ × ℐ → ℰ

19

20 CHAPTER 2. BACKGROUND

where ℰ is the set of possible epistemic states and ℐ is the set of all possible
information tokens.

The characteristics of the information tokens are not always made ex-
plicit in the work of researchers (see, e.g., [Gär92b] and the example cited
within). Thus, the common knowledge that there is no one, definitive way
to revise one’s beliefs was to be reinforced by the clarification that there
are many different types of belief change, each of which may be done in a
number of ways. The prime example is belief update [KM92], whereby the
change in the agent’s beliefs does not result because of new, more accurate
information about a static world (as implicitly assumed in a belief revision).
Instead, belief update aims to incorporate information in an epistemic state
about a changing world, and thus interrelates with research on theories and
logics of action.

Another epistemological issue pertaining to the field is that of how to
treat the distinction between “basic” or self-justified beliefs, and “derived”
beliefs or beliefs that ultimately have to be justified in terms of the former
ones. By way of example, a belief may be held because it is the consequence
of another, more firmly held. When the more firmly held is retracted, the
question of whether to retract the weaker one or not is posed. To answer
it, a group of researchers believe that the justification of beliefs should
be included, or accounted for, in the representation of the epistemic state.
Such a view is called foundational. The coherence view, on the contrary,
holds that if the right belief change operator is found logical coherence of
the epistemic state is all that is needed in order to decide such questions.
[dV94] argues that the two views are mathematically equivalent.

Lastly, another issue related to the representation of the epistemic state
is its qualitative or quantitative nature. For example, it may involve quan-
titative characteristics such as probability.

2.1.2 The AGM approach

It would not be unfair to say that most of the research in the field of the-
ory change has followed what has been named the AGM approach. This
framework, which is considered to be seminal work, was suggested by David
Makinson, Peter Gärdenfors and the late Carlos Alchourrón, or “AGM”
[AGM85, Gär88].

Their work assumes that epistemic states can be represented by belief

sets, ‘flat’ sets of sentences of some logic that are closed under logical con-
sequence. Thus, ℰ ⊆ 2ℒ, where ℒ is the language of the underlying logic,
and ℐ = ℒ. In this sense, the AGM approach is trivially a qualitative one.
Moreover, there is no distinction between held and derived beliefs, thus
subscribing to the coherence view.

They argued that

2.1. THEORY CHANGE 21

∙ There is no ‘one’ way of revising one’s beliefs.

∙ While there is nothing that can be said logically about what revi-
sions should look like, there is an applicable notion of “informational
economy” that revisions should comply with.

∙ Thus, there is a set of postulates, named rationality postulates, that
any reasonable revision operator should satisfy.

The AGM theory also considers two more operations and the inter-
relations between them. Expansion (here denoted as +) is simply the
logical closure of the union of a set of sentences with another sentence,
i.e. 𝐾 + 𝜑 = Cl(𝐾 ∪ {𝜑}). The second operation is called contraction and
is, in a sense, the opposite of revision; instead of trying to incorporate a
belief in the epistemic state, the aim is to retract it.

For completeness’ sake we list the AGM axioms for revisions below.

K1. For any sentence 𝜑 ∈ ℒ and any belief set 𝐾, 𝐾 * 𝜑 is a belief set.

K2. 𝜑 ∈ 𝐾 * 𝜑.

K3. 𝐾 * 𝜑 ⊆ 𝐾 + 𝜑.

K4. If ¬𝜑 /∈ 𝐾, then 𝐾 + 𝜑 ⊆ 𝐾 * 𝜑.

K5. 𝐾 * 𝜑 = ℒ if and only if ⊢ ¬𝜑.

K6. If ⊢ 𝜑↔ 𝜓, then 𝐾 * 𝜑 = 𝐾 * 𝜓.

K7. 𝐾 * 𝜑 ∧ 𝜓 ⊆ (𝐾 * 𝜑) + 𝜓.

K8. If ¬𝜓 /∈ 𝐾 * 𝜑, then (𝐾 * 𝜑) + 𝜓 ⊆ 𝐾 * 𝜑 ∧ 𝜓.

Much research has been done within this framework. Major topics in-
clude:

∙ In the AGM approach, a belief change operator is implicitly associ-
ated with the epistemic state it operates on. In other words, there is
no mention of conditions that a belief change operator should satisfy
across the set of all epistemic states. The axioms include conditions on
the sentential argument, but none on the belief set. Thus, iteration,
i.e. revising a revised epistemic state, is a poorly understood issue.
For analysis see [FH99, Rot99] and for proposals see [Nay94, KP00].

∙ Many proposals have been made for specific revision/update operators,
most of which use propositional logic as the underlying object logic,
usually with a finite set of propositional letters, [Bor85, Win88, Dal88,
Sat88, GS88, For89, ZF96, Wil97]. Their computational complexity
has also been studied [EG92, Neb96, LS96, CDLS99].

22 CHAPTER 2. BACKGROUND

∙ The interrelations of theory change and other fields are wide-ranging:

– Belief revision and non-monotonic reasoning [Gär88].

– Update and counterfactuals [GM95, RS97, Gra98].

– Theory change and circumscription [LS95].

– Belief revision and abduction [BB95].

∙ Work has also been done on providing semantics for the axiomatic
characterisation of theory change operators. Examples are:

– AGM, along with the rationality postulates for revision, sug-
gested a semantics based on partial meet contraction functions

[AGM85].

– An alternative, constructive characterisation of revision opera-
tors was suggested by Gärdenfors and Makinson in [GM88], that
involves orderings of the sentences of ℒ named epistemic en-

trenchment orderings.

– Another approach, by Grove [Gro88], concerns a model-based
semantics. This approach characterises revision operators by re-
lating them to systems of spheres, or certain families of nested
sets of models.

– A very important characterisation of theory change operators
appears in [KM89, KM91]. According to this approach, theory
change can be seen as a minimisation operation over the set of
models of the new information, with respect to a particular or-
dering of those models.

2.1.3 Semantical approaches on theory change

A long-standing line of research in the fields of non-monotonic reasoning,
conditional logics and counterfactuals (see e.g. [KLM90, BMP97]) is one
that approaches the object in a semantical way. On the other hand, the
AGM approach is very much an axiomatic one. Because of the interrelations
between those areas and theory change, it is no surprise that this trend has
been extended into theory change too with very concise results.

The key idea behind the semantical approaches in most of these cases
is the concept of a preference relation. The following is an excerpt from
[vBvEF93].

In standard logic, valid reference is defined according to Tarksi’s
well-known schema expressing ‘transmission of truth’:

“Each model of the premises is also a model of the conclusion”.

2.1. THEORY CHANGE 23

There are two ‘flat’ quantifications in this definition: one over
‘all models’ for the premises, and inside that, one over truth ‘for
all members’ of the set of premises. A more flexible perspec-
tive arises here when models may be distinguishable as to their
relevance, desirability or plausibility in a given style of inference.

Grove’s approach

One of the first such approaches to theory change is by A. Grove [Gro88],
presented briefly here. Let 𝑇 ⊆ ℒ be a theory and 𝑆 ⊆ 2ℳ a system of

spheres centred on 𝑇 , a family of sets of models that satisfies the following
conditions:

S1. 𝑆 is totally ordered by ⊆.

S2. mod(𝑇) is the ⊆-minimum of 𝑆.

S3. The class of all modelsℳ is in 𝑆.

S4. If 𝜑 is a sentence in ℒ and there is any set of models in 𝑆 intersecting
the models of 𝜑, then there is a smallest set (with respect to ⊆) in 𝑆
that intersects mod(𝜑).

Given S1–4, a function 𝑐𝑆 : ℒ → 2ℳ can be defined which given a sentence
returns the ⊆-minimum set in 𝑆 that intersects with the models of that
sentence. Then, the following operator *𝑆 can be defined

𝑇 *𝑆 𝜑 = th (mod(𝜑) ∩ 𝑐𝑆(𝜑))

where th(𝑀) is used to denote the set of sentences that are true on all
models that belong to the set 𝑀 , and accordingly, mod(𝜑) denotes the class
of models that satisfy 𝜑.

Grove’s representation theorem identifies the class of theory change op-
erators that satisfy the AGM revision axioms as the ones that can be con-
structed by the previous scheme. In his paper Grove suggests that systems
of spheres are actually equivalent to certain orderings on models but does
not go into further details.

Katsuno and Mendelzon’s approach: revisions

Many of the proposals for specific theory change operators that were being
published around that time had a definite semantic flavour, e.g. [Bor85,
Win88, Sat88, Dal88]. The common denominator in all of these approaches
was isolated and formally characterised in the representation theorems of
Katsuno and Mendelzon in [KM89, KM91]. We summarise their results
here.

24 CHAPTER 2. BACKGROUND

Their formulation is concerned with a propositional logic over a finite
collection of propositional atoms. In this case, epistemic states can be mod-
elled by formulae rather than arbitrary sets of sentences, thus making theory
change a function of the type ∘ : ℒ × ℒ → ℒ. Katsuno and Mendelzon for-
mulate a set of postulates R1–R6 which, for finite languages, are equivalent
to the AGM postulates.

R1. 𝜓 ∘ 𝜇 ⊢ 𝜇.

R2. If 𝜓 ∧ 𝜇 is satisfiable, then 𝜓 ∘ 𝜇 ≡ 𝜓 ∧ 𝜇.

R3. If 𝜇 is satisfiable, then 𝜓 ∘ 𝜇 is satisfiable.

R4. If 𝜓1 ≡ 𝜓2 and 𝜇1 ≡ 𝜇2, then 𝜓1 ∘ 𝜇1 ≡ 𝜓2 ∘ 𝜇2.

R5. (𝜓 ∘ 𝜇) ∧ 𝜑 implies 𝜓 ∘ (𝜇 ∧ 𝜑).

R6. If (𝜓 ∘ 𝜇) ∧ 𝜑 is satisfiable, then 𝜓 ∘ (𝜇 ∧ 𝜑) implies (𝜓 ∘ 𝜇) ∧ 𝜑.

Let 𝑓 : ℒ → ℳ×ℳ be a function that takes a formula 𝜓 as an argument
and returns a total1 preorder ≤𝜓 on the set of models that satisfies the
following conditions

F1. min≤𝜓(ℳ) = mod(𝜓) (cf. with S2 above).

F2. If 𝜓1 ≡ 𝜓2, then ≤𝜓1=≤𝜓2 .

Note that, since the language is finite, it is guaranteed that for any satis-
fiable sentence 𝜑, min≤𝜓(mod(𝜑)) ̸= ∅ (cf. with S4 above). Katsuno and
Mendelzon call such functions faithful assignments.

Using such a function 𝑓 , a theory change operator can be defined:

𝜓 *𝑓 𝜇 = th

(︂
min
≤𝜓

(mod(𝜇))

)︂

In [KM91], Katsuno and Mendelzon proved the following representation
theorem that characterises belief revision operators in terms of faithful as-
signments.

Theorem 2.1.1 (Representation theorem for revisions [KM91])
A theory change operator ∘ satisfies the axioms R1–R6 if and only if

there exists a faithful assignment 𝑓 such that ∘ = *𝑓 . 2

This formulation is easily seen to be closely related to that by Grove. A
system of spheres induces an ordering on interpretations, and vice versa.

1Meaning that for any two models 𝑀,𝑁 , 𝑀 ≤𝜓 𝑁 or 𝑁 ≤𝜓 𝑀 .

2.1. THEORY CHANGE 25

Katsuno and Mendelzon’s approach: updates

The other type of theory change that Katsuno and Mendelzon have charac-
terised in [KM92], belief update, is susceptible to a similar approach. Again,
they consider a finite propositional language, in which a belief update op-
erator is a function ◇ : ℒ×ℒ → ℒ. Similarly with the case of revision, they
list a set of axioms that all belief update operators should satisfy:

U1. 𝜓 ◇ 𝜇 ⊢ 𝜇.

U2. If 𝜓 implies 𝜇, then 𝜓 ◇ 𝜇 ≡ 𝜓.

U3. If both 𝜓 and 𝜇 are satisfiable, then 𝜓 ◇ 𝜇 is satisfiable.

U4. If 𝜓1 ≡ 𝜓2 and 𝜇1 ≡ 𝜇2, then 𝜓1 ◇ 𝜇1 ≡ 𝜓2 ◇ 𝜇2.

U5. (𝜓 ◇ 𝜇) ∧ 𝜑 implies 𝜓 ◇ (𝜇 ∧ 𝜑).

U6. If 𝜓 ◇ 𝜇1 implies 𝜇2 and 𝜓 ◇ 𝜇2 implies 𝜇1, then 𝜓 ◇ 𝜇1 ≡ 𝜓 ◇ 𝜇2.

U7. If 𝜓 is complete then (𝜓 ◇ 𝜇1) ∧ (𝜓 ◇ 𝜇2) implies 𝜓 ◇ (𝜇1 ∨ 𝜇2).

U8. (𝜓1 ∨ 𝜓2) ◇ 𝜇 ≡ (𝜓1 ◇ 𝜇) ∨ (𝜓2 ◇ 𝜇).

In this case, a faithful assignment is a function 𝑓 :ℳ→ℳ×ℳ from
models to partial preorders that have the following property

FU. min≤𝑀 (ℳ) = {𝑀}, for any model 𝑀 .

The definition of the theory change operator is point-wise:

𝜓 *𝑓 𝜇 = th

⎛
⎝ ⋃︁
𝑀∈mod(𝜓)

min
≤𝑀

(mod(𝜇))

⎞
⎠

Under this framework, the following representation theorem holds:

Theorem 2.1.2 (Representation theorem for updates [KM92])
An operator ◇ satisfies conditions U1–U8 if and only if there exists a

faithful assignment 𝑓 such that ◇ = *𝑓 . 2

The unifying idea behind these formulations is what Katsuno and Men-
delzon call a faithful assignment. This concept supplements the forms of
apparatus for ‘generating’ theory change operators, i.e. epistemic entrench-
ment orderings, partial meet functions, systems of spheres and so on. The
appeal of this particular formulation lies in the fact that in some cases it
is easier and more concise to define what it means for a model of a logic
to be at least as ‘close’ to a point of reference than another model. This
applies especially when the models of the logic can be thought of as models

of systems, such as Kripke models and, more generally, transition systems.

26 CHAPTER 2. BACKGROUND

2.2 Binary decision diagrams

2.2.1 Definitions and basic results

The Binary Decision Diagram (BDD) is a graph-based data structure
that can represent boolean functions or propositions. BDDs, in the form
used in this thesis,2 were introduced by Bryant [Bry86]. They are widely
known because of their use in model checking, a hardware and software
verification technique which works by exhaustive state-space exploration. In
that context, their usage has led to a dramatic improvement in the efficiency
of model checking implementations, and therefore in the size of model that
can realistically be explored [McM93, BCM+90].

𝑦 𝑦

10 1 1

𝑥

0 1

𝑦

𝑥

0 1

𝑥4

𝑥3

𝑥2

𝑥1

Figure 2.1: (a) The decision tree and (b) the BDD for the formula 𝑥 ∨ 𝑦.
(c) The BDD for the formula ((𝑝 ∨ 𝑞) ∧ 𝑟) ∨ 𝑠.

The decision tree for the formula 𝑥 ∨ 𝑦 is shown in figure 2.1(a). The
dotted lines denote the path to be taken when a propositional atom is false
and the solid lines when it is true. The decision tree shows four paths
corresponding to the four possible values of 𝑥 and 𝑦, and the leaves show
the resulting truth value of the formula in those cases. Decision trees thus
code up the truth-table for the formula. They are not space-efficient, having
2𝑛+1−1 nodes when the number of atomic propositions in the formula is 𝑛.

2That is, Reduced Ordered Binary Decision Diagrams or ROBDDs which we will ab-
breviate as BDDs. Definitions will follow.

2.2. BINARY DECISION DIAGRAMS 27

The BDD for 𝑥 ∨ 𝑦 is shown in figure 2.1(b). It is obtained by fold-
ing together shared subtrees in the decision tree and removing redundant
decision nodes. BDDs can be much more compact than the corresponding
decision trees. For example, the BDD for ((𝑝 ∨ 𝑞) ∧ 𝑟) ∨ 𝑠, shown in figure
2.1(c), contains 6 nodes, while the corresponding tree contains 31 nodes.
In the worst case BDDs can still have 𝑂(2𝑛) nodes. However, BDDs have
been extensively used in verification where they appear to be a compact
representation in practise.

Both decision trees and BDDs assume a fixed ordering of the variables
into layers. The size of the decision tree is independent of that ordering,
but the size of the BDD is not; the space-economy introduced by sharing
sub-diagrams usually depends on the ordering of the variables.

A BDD is fully reduced if it has no redundant decision nodes and no
isomorphic sub-diagrams. There is an algorithm, called reduce, for reducing
a decision tree or partly-reduced BDD into its fully-reduced form. reduce is
efficient, requiring polynomial time in the size of the input structure. Once
reduced, BDDs are canonical : this means that there is a unique reduced
BDD (up to isomorphism) for a given formula with respect to a fixed variable
ordering.

Definitions of BDDs and results on their algorithmic complexity can
be found in [Bry86]; definitions and a survey of applications can be found
in [Bry92]; an extensive analysis geared towards verification in [Som99];
a survey of derivative representations in [Bry95]; and a tutorial on their
applications in [And97].

2.2.2 Algorithms on binary decision diagrams

A BDD that represents some propositional formula or boolean function can
be manipulated using several algorithms that implement logical operations.
Some of these algorithms are presented below along with their complexity
characteristics. Note that most of the algorithms presented have an iden-
tical space and time worst-case complexity. Thus, unless explicitly stated,
complexity will refer to both cases.

Validity, satisfiability and equivalence checking

Because of the canonicity of BDDs, it is easy to check whether a BDD
represents a tautology or an unsatisfiable formula. Every tautology is repre-
sented by the same BDD, namely, the BDD with a single node, the terminal
1. Thus, validity checking is a constant-time operation. Similarly, a formula
is satisfiable if its BDD representation is not the terminal node 0. Again
this results in a constant-time operation.

It is well known that the satisfiability problem is NP-complete and the
validity problem is coNP-complete. But from the above observations it

28 CHAPTER 2. BACKGROUND

follows that for deciding these problems it is enough to construct a BDD
equivalent to the formula in question. Thus the conversion of a formula to
a BDD is NP- and coNP-hard in the length of the formula. Consequently,
if it is indeed the case that NP ̸= coNP then it follows that the problem of
converting a formula to a BDD is not a member of NP ∪ coNP.

The canonicity property of BDDs implies that checking if two formulae
are equivalent can be done by testing their BDDs for graph isomorphism,
which can be done in polynomial time in the sizes of the respective BDDs.
In BDD software libraries like CUDD [Som] or BuDDy [LN], hash tables
of pointers to BDD nodes are used to enable near-constant time retrieval.
In this case, equivalence checking can be done by pointer comparison and
hence in near-constant time.

Conversion to binary decision diagrams

Related to the above observation on the complexity of the conversion of a
formula to a BDD is the fact that the worst-case space complexity of a BDD
is 𝑂(2𝑛) where 𝑛 is the number of variables in the formula. This occurs
when the reduction offers only sub-exponential space-economy. However,
the variable ordering drastically affects the amount of reduction possible,
so it is not always evident whether this exponential worst-case complexity
is due to the ordering or is inherent to the formula represented. On the
other hand, many formulae have been found to have very compact BDD
representations by choosing appropriate variable orderings [Bry92]. A

Note that the complexity measures used for BDDs depend on the number
of variables and not (directly) on the length of the represented formula
(which is the usual complexity measure in logic). Because of the canonicity
of BDDs, the length of the formula is no more a useful indication of the
time and space that BDD algorithms will require. Thus, it makes sense to
use the number of variables rather than the length of the formula.

An additional point about the limitations of BDDs is that finding an
optimal variable ordering for a given formula, i.e. an ordering that minimises
the size of its BDD, is a coNP-complete problem [Bry86]. However, there
are several heuristics which perform quite well in practice.

The algorithms apply, negate and restrict

Given two BDDs representing the formulae 𝜑 and 𝜓 (having |𝜑| nodes and
|𝜓| nodes respectively) together with a binary connective ∙, the algorithm
apply computes the BDD for 𝜑 ∙ 𝜓. The worst-case complexity of apply is
𝑂(|𝜑| · |𝜓|) and it is known to be a tight bound, i.e. there are formulae 𝜑 and
𝜓 such that their conjunction exhibits a complexity of 𝑂(|𝜑| · |𝜓|) [Bry86].

Given the BDD for 𝜑, the algorithm negate computes the BDD for ¬𝜑
by using apply and the → operator: ¬𝜑 = 𝜑 → ⊥. Thus its complexity is

2.2. BINARY DECISION DIAGRAMS 29

𝑂(|𝜑| · 1) = 𝑂(|𝜑|). Note that negate could be implemented as a constant-
time operation by swapping the terminal nodes. However, for reasons of
efficiency, most BDD packages use the same terminal nodes for all stored
BDDs, all of which would be negated if the terminal nodes were to be
swapped.

These two algorithms provide a way for converting a formula to a BDD
without creating the decision tree and then reducing it to BDD form. The
BDD representation of a propositional variable is a tree with three nodes,
the root labelled by the variable and the two terminal nodes, 1 and 0. Using
these and the algorithms apply and negate, a formula can be recursively
converted to the equivalent BDD. Indeed, this is the only algorithm for con-
version used in practise since converting a formula to its decision tree is
always an exponential operation in the number of variables, whereas con-
version using apply is expensive only in the worst case.

The result 𝜑[𝐶/𝑝] of the substitution of a variable 𝑝 by a boolean con-
stant 𝐶 can be computed with the algorithm restrict. The worst-case
complexity is 𝑂(|𝜑|) [Bry86]. As noted in the same paper, the algorithm
can be modified to restrict several variables simultaneously without affecting
its complexity.

The algorithms andExists and impliesForall

The formulae ∀𝑝.𝜑 and ∃𝑝.𝜑 are defined as

∀𝑝.𝜑 = 𝜑[⊤/𝑝] ∧ 𝜑[⊥/𝑝]

∃𝑝.𝜑 = 𝜑[⊤/𝑝] ∨ 𝜑[⊥/𝑝]

The BDDs for ∀𝑝.𝜑 and ∃𝑝.𝜑 can be computed from the BDD for 𝜑 by the
algorithms apply and restrict, with complexity 𝑂(|𝜑|2) [Bry92]. Consec-
utive quantification over a vector of 𝑘 variables using this algorithm results
in an upper bound for the worst-case complexity of 𝑂(|𝜑|2

𝑘

).
McMillan suggests the andExists algorithm [McM93] for computing an

operation that occurs very often in model checking and which will be used
extensively in chapter 3. Let 𝜑 and 𝜓 be two BDDs over an unprimed and a
primed copy of the propositional variables (hence the total number is 2𝑛, if
𝑛 is the number of variables). The algorithm computes the consecutive exis-
tential quantification over a specified vector of variables, of the conjunction
𝜑 ∧ 𝜓 but without explicitly forming the BDD for it. An upper bound on
the time complexity of this algorithm is 𝑂(|𝜑| · |𝜓| ·22𝑛). However, intuition
and empirical evidence both suggest the existence of a smaller bound. The
resulting BDD has a size bounded by the general worst-case of the result,
i.e. 𝑂(22𝑛−𝑘), where 𝑘 is the number of variables on which we quantify.
McMillan also proves that the satisfiability problem can be polynomially
reduced to BDD existential quantification over a vector of variables, thus
making unlikely the possibility of a polynomial algorithm.

30 CHAPTER 2. BACKGROUND

Universal quantification can be computed by making use of the fact that
∀ ≡ ¬∃¬ and the algorithm negate giving the same complexity. The dual
algorithm to andExists, impliesForall, is derivable from andExists and
negate, having again the same complexity bound.

The algorithm replace

When manipulating BDDs, it is often necessary to replace some variables
in a BDD by other variables, an operation corresponding to substitution
in logic. This is a linear-time operation if the BDD resulting from the
substitution obeys the variable ordering chosen. If it does not, then re-
ordering is necessary and in general this can take exponential time. In this
case andExists can be used to perform this operation. It is easy to see that
when the variables 𝑥′1, . . . , 𝑥

′
𝑛 do not appear already in 𝜑 then

𝜑[𝑥′1/𝑥1, . . . , 𝑥
′
𝑛/𝑥𝑛] ≡ ∃𝑥1, . . . , 𝑥𝑛. (𝜑 ∧ (𝑥1 ↔ 𝑥′1) ∧ . . . ∧ (𝑥𝑛 ↔ 𝑥′𝑛))

As such, we can use andExists to perform this substitution.

A note on the complexity of BDDs

Problems of high intrinsic complexity exist in the heart of the field of boolean
optimisation and data structures for boolean functions. Apart from the high
complexity associated with logical problems such as satisfiability and equiv-
alence, there is a plethora of unexpected results about the representational
complexity of the various data structures.

Firstly, BDDs can be exponentially more succinct than decision trees.
However, there are classes of formulae parameterised over the number of
their boolean variables (such as the formula for the middle bit of a multiplier
[Bry91]) that have an exponentially-sized best-case complexity. In other
words, whatever the choice of variable ordering, the sizes of the BDDs for
these formulae increase exponentially in the number of variables. Moreover,
by a counting argument it follows that ‘most’ boolean functions have non-
polynomially sized minimal BDD representations: the ratio of the number
of boolean functions that can be represented by BDDs of size bounded
by a polynomial, to the total number of boolean functions in 𝑛 variables
tends to zero as 𝑛 tends to infinity [AH97]. Also, studies indicate that a
randomly selected boolean function will have a minimal BDD that differs
from the worst case by at most a factor of 1 + 𝑜(1) [GPS98]. Finally, it has
been demonstrated that BDDs and resolution perform in fundamentally
different ways when used to prove consistency [GZ01]: in this paper classes
of formulae are identified where consistency checking by resolution takes
exponential time when the BDD method needs only polynomial, as well as
classes of formulae where the converse happens.

2.2. BINARY DECISION DIAGRAMS 31

Secondly, even though it might seem that BDDs are not adequate struc-
tures for representing boolean functions, similar results affect even more con-
cise forms of representation. For example, Boolean Expression Diagrams

(BEDs) [AH97] are another graph-based data structure for representing for-
mulae. They are closely related to boolean circuits. As such, they can be
exponentially more succinct than BDDs; there is a boolean circuit for a mul-
tiplier that is only polynomially sized in the number of variables. However,
BEDs too suffer from exponential ‘over-population’, as the same counting
argument applies to boolean circuits too. Surprisingly, it seems very hard
to come up with an example of a function that requires an exponential BED
[AH97].

Consequently, it is not reasonable to expect low worst-case (or even
average-case) complexities from any such data structure. This belief is re-
inforced by results on the complexity of problems when graph-based data
structures are used to compress the inputs. For example, it has been shown
that when BDDs are used to represent graphs, then many graph-related
problems suffer an exponential jump in worst-case complexity (e.g. from
NP to NEXPTIME) [FKVV99]. This is a phenomenon that affects many
other less and more succinct data structures (e.g. boolean circuits).

What complicates matters even more is that BDDs have been used ex-
tensively in symbolic model checking, yielding unprecedented performance
in many cases. These facts may indicate that the study of worst- and even
average-case complexities is not indicative of the usefulness of these data
structures. Notably, in the field of symbolic model checking researchers
have begun evaluating algorithms with respect to how many symbolic steps

or pre- and post-image3 computations are executed, even if each of these
steps has exponential worst-case complexity [Som99].

2.2.3 Expression syntax for BDDs

We will use a (slightly bold-face) logical notation to denote the algorithms
of the preceding section, as summarised in the table below (𝐵 will denote
a BDD representing some formula, |𝐵| will be its size in nodes and 𝑝 is a
vector of propositional variables).

algorithm (with arguments) notation
apply(𝐵1, 𝐵2, ∘) 𝐵1 ∘𝐵2

negate(𝐵) ¬𝐵
exists(𝑝, 𝐵) ∃𝑝. 𝐵
andExists(𝑝, 𝐵1, 𝐵2) ∃𝑝. (𝐵1 ∧𝐵2)
replace(𝑝,𝑝′, 𝐵) 𝐵[𝑝′/𝑝]

Some derived algorithms will be presented below, which will be useful
in chapter 3. These can be thought of as macros.

3Such an operation is, basically, a call to the andExists or impliesForall algorithm.

32 CHAPTER 2. BACKGROUND

BDDs can be thought of representing formulae by representing the set
of models4 that satisfy them. Indeed, all the paths in a BDD that start
at the root and end at the terminal 1 are the valuations that satisfy the
corresponding formula.5 To implement some theory change operators, it is
necessary to be able to represent relations on models as BDDs. A relation
can be thought of as a function which, given two models, returns a boolean
value. Therefore, it can be represented as a formula (and thus as the BDD
of that formula) over two copies of the atomic propositions, which we call
unprimed and primed, and write as 𝑝,𝑝′.

For example, consider the ordering ≤ shown in figure 2.2 over the four
models {𝑝𝑞, 𝑝𝑞, 𝑝𝑞, 𝑝𝑞} of the language {𝑝, 𝑞}. Its BDD is also shown in the
figure. To determine whether 𝑀 ≤𝑀 ′, we supply the truth values 𝑝 for 𝑀
and 𝑝′ for 𝑀 ′ to the BDD and get a boolean value result.

𝑝𝑞

𝑝𝑞

𝑝𝑞𝑝𝑞

𝑝

𝑝′

𝑞

𝑞′

0 1

Figure 2.2: An ordering on models of the language {𝑝, 𝑞}, and its BDD.

If 𝐵𝑅 is a BDD representing a relation 𝑅 over unprimed and primed
variables, then the BDD for the inverse relation 𝑅−1 is obtained by simulta-
neously renaming the unprimed variables to primed and the primed ones to
unprimed, i.e. 𝐵𝑅[𝑝/𝑝′,𝑝′/𝑝]. We write this as inv(𝐵). The strict counter-
part of the relation 𝑅, denoted by 𝑅<, is given mathematically as 𝑅∩𝑅−1.
Thus, the BDD for the strict counterpart is given by

strict(𝐵𝑅) = 𝐵𝑅 ∧¬inv(𝐵𝑅)

4Here, and in other places in this thesis, the word ‘model’ is used with its usual logical
meaning, i.e., to mean interpretation. The context of each use of the word should make
it clear which meaning is intended (and in some cases both meanings).

5Any variables that appear in the formula and not in a path leading to the terminal 1
can be assigned either truth value; all the resulting models will satisfy the formula.

2.2. BINARY DECISION DIAGRAMS 33

Note that inversion of 𝐵𝑅, i.e. the swapping of the primed and unprimed
variables, will necessitate the re-ordering the BDD and is therefore a poten-
tially expensive operation. inv is the only instance of variable replacement
we will use that does not respect the ordering of variables; all the other
replacements can be performed in linear-time.

If 𝑅 is a relation on a set 𝑆 and 𝑋 is a subset of 𝑆, we may define the
universal post-image of 𝑋 under 𝑅,

post∀𝑅(𝑋) = {𝑏 ∈ 𝑆 | ∀𝑎 ∈ 𝑋.𝑅(𝑎, 𝑏)}

The universal pre-image is similarly definable,

pre∀𝑅(𝑋) = {𝑎 ∈ 𝑆 | ∀𝑏 ∈ 𝑋.𝑅(𝑎, 𝑏)}

If 𝐵𝑅 and 𝐵𝑋 are BDDs representing 𝑅 and 𝑋, then the BDDs for these
sets are given as

post(𝐵𝑅, 𝐵𝑋) = (∀𝑝. (𝐵𝑋 → 𝐵𝑅))[𝑝/𝑝
′]

pre(𝐵𝑅, 𝐵𝑋) = ∀𝑝′. (𝐵𝑋 [𝑝′/𝑝] → 𝐵𝑅)

The 𝑅-minimal elements of 𝑋 are defined as

min
𝑅

(𝑋) =
{︀
𝑏 ∈ 𝑋

⃒⃒
∀𝑎 ∈ 𝑋.𝑅<(𝑎, 𝑏)

}︀

This is post∀
𝑅<

(𝑋) ∩ 𝑋, and therefore its BDD can be written in terms of
the BDDs 𝐵𝑅, 𝐵𝑋 for 𝑅 and 𝑋 as

min(𝐵𝑅, 𝐵𝑋) = post(¬strict(𝐵𝑅), 𝐵𝑋)∧𝐵𝑋

A relation 𝑅 over a set 𝑆 is called total if for any pair of elements 𝑎, 𝑏 of
𝑆, it is the case that 𝑅(𝑎, 𝑏) or 𝑅(𝑏, 𝑎). If the relation 𝑅 is known to be
total, then the set of minimal elements coincides with the set of minimum

elements, i.e. those elements that are less or equal to all other members of
the set. Since, in this case, it is not necessary to extract the strict version of
𝑅, this permits an optimisation in the way we calculate the BDD for min.

min
𝑅

(𝑋) = {𝑎 ∈ 𝑋 | ∀𝑏 ∈ 𝑋.𝑅(𝑎, 𝑏)}

which is the same as pre∀𝑅(𝑋) ∩ 𝑋. Therefore the BDD algorithm for min
need not use strict:

min(𝐵𝑅, 𝐵𝑋) = pre(𝐵𝑅, 𝐵𝑋)∧𝐵𝑋

34 CHAPTER 2. BACKGROUND

2.2.4 Upper bounds of BDD size and circuit implementa-

tions

In chapter 3 bounds for the size of several BDDs will be produced. Instru-
mental to the derivation of these bounds is a theorem, proved in [McM93],
which is presented below.

Let 𝜑 be an 𝑛-ary boolean function and suppose a logical circuit com-
puting 𝜑 is given. This circuit will contain a number 𝑚 of blocks that are
either gates (binary or otherwise) or primary inputs (inputs are counted as
blocks with zero inputs and one output). Let a linear order of the circuit
be a numbering of the blocks from 1 to 𝑚, with the block producing the
primary output numbered last. Then, the forward cross section at block

𝑖 is the total number of wires from an output of a block 𝑗 such that 𝑗 < 𝑖
to an input of a block 𝑘 such that 𝑖 ≤ 𝑘. The forward width 𝑤𝑓 of the

circuit (with respect to the linear order chosen) is defined as the maximum
forward cross section for all blocks.

Similarly, the reverse cross section at block 𝑖 is the total number of
wires from an output of a block 𝑗 such that 𝑗 > 𝑖 to an input of a block 𝑘
such that 𝑖 ≥ 𝑘. The reverse width 𝑤𝑟 of the circuit (again with respect
to the linear order) is defined as the maximum reverse cross section at any
block. Then, the following theorem holds:

Theorem 2.2.1 (Circuit-based bounds on BDD sizes [McM93])
If a circuit computing function 𝜑 has forward width 𝑤𝑓 and reverse

width 𝑤𝑟 for some linear order 𝐿, then there is a BDD representing 𝜑
of size bounded by 𝑛 · 2𝑤𝑓2

𝑤𝑟
, where 𝑛 is the number of inputs of the

circuit. 2

In what follows, we will only deal with circuits that accept topological
orderings of their blocks, that is, orderings with 𝑤𝑟 = 0. In this case, the
above-mentioned bound becomes 𝑛 · 2𝑤𝑓 . Note that this bound can yield
complexities higher than linear when the forward width is some function
of 𝑛, rather than just a constant. Another point to note is that changing
the boolean base or using aggregate blocks of binary gates as the gates of
the circuit mentioned above does not change the order of magnitude of the
bound but changes only linearly 𝑤𝑓 and 𝑤𝑟.

The numbering of the blocks which is used to calculate 𝑤𝑓 and 𝑤𝑟 implies
an ordering on inputs and that gives us the ordering of the variables in the
BDD.

2.3 Modal logic

In chapter 4, we will generally work with a finite set 𝒜 of propositional
variables. The modal language ℒK of the logic K𝑚 on 𝒜 with 𝑚 modalities
is defined inductively;

2.3. MODAL LOGIC 35

∙ if 𝑝 ∈ 𝒜 then 𝑝 ∈ ℒK,

∙ if 𝜑, 𝜓 ∈ ℒK then ¬𝜑, 𝜑 ∧ 𝜓 ∈ ℒK,

∙ if 𝜑 ∈ ℒK then 3𝑖𝜑 ∈ ℒK for all 1 ≤ 𝑖 ≤ 𝑚.

The usual propositional abbreviations apply as well as the modal 2𝑖 ≡
¬3𝑖¬. The usual axiomatisation of K𝑚 follows.

P. Any propositional tautology is an axiom (even those including modal-
ities, e.g., 3𝑖𝑝 ∨ ¬3𝑖𝑝).

K. Any formula of the form 2𝑖(𝜑→ 𝜓)→ (2𝑖𝜑→ 2𝑖𝜓) for any 1 ≤ 𝑖 ≤
𝑚.

Its rules of inference are:

MP. Modus ponens: if 𝜑 and 𝜑→ 𝜓, then 𝜓.

Nec. Necessitation: if 𝜑, then 2𝑖𝜑, for all 1 ≤ 𝑖 ≤ 𝑚.

The logic Λ of K𝑚 is defined to be the smallest subset of ℒK that contains
all the instances of the above axioms and is closed under the two rules of
inference. The fact that a formula 𝜑 ∈ ℒK is in Λ is denoted by ⊢ 𝜑. If 𝑇
is a set of sentences and 𝜑 a sentence, then 𝜑 is deducible from 𝑇 , written
𝑇 ⊢ 𝜑, if there exists a number 𝑛 ≥ 0 and sentences 𝜓1, . . . 𝜓𝑛 ∈ 𝑇 such
that ⊢ 𝜓1 ∧ . . . ∧ 𝜓𝑛 → 𝜑. 𝑇 is called consistent if 𝑇 ̸⊢ ⊥ and inconsistent

otherwise.
The most popular semantics for modal logics is through Kripke models.

Definition 2.3.1 (Kripke models)
A tuple𝑀 =

⟨︀
𝑊𝑀 , 𝑟𝑀 , 𝑅

1
𝑀 , . . . , 𝑅

𝑚
𝑀 , 𝑣𝑀

⟩︀
is called a Kripke model whenever

∙ 𝑊𝑀 is a set of states or worlds.

∙ 𝑟𝑀 is a distinguished state in 𝑊𝑀 called the initial state or the root.

∙ 𝑅𝑖𝑀 ⊆ 𝑊𝑀 ×𝑊𝑀 are accessibility relations. We will only consider
models whose states are all reachable from the root. In other words,
for any state 𝑠 ∈𝑊𝑀 there exists a sequence of states 𝑠1, . . . , 𝑠𝑛 such
that 𝑠1 = 𝑟𝑀 , 𝑠𝑛 = 𝑠 and for all 1 ≤ 𝑗 < 𝑛, (𝑠𝑗 , 𝑠𝑗+1) ∈

⋃︀𝑚
𝑖=1𝑅

𝑖
𝑀 .

∙ 𝑣𝑀 :𝑊𝑀 → 2𝒜 is a valuation for the propositional letters. 2

By |𝑀 | we denote the cardinality of 𝑊𝑀 . 𝑀 is said to be finite if |𝑀 | is
finite. 𝒦 is the class of all Kripke models.

Satisfaction of formulae at a state 𝑠 is defined inductively by the usual
propositional clauses along with the modal one:

𝑀, 𝑠 |= 3𝑖𝜑 iff ∃𝑡 ∈𝑊𝑀 , (𝑠, 𝑡) ∈ 𝑅
𝑖
𝑀 and 𝑀, 𝑡 |= 𝜑

36 CHAPTER 2. BACKGROUND

We will write 𝑠 |= 𝜑 when the model is obvious. Satisfaction at the level of
models is defined as follows.

∙ 𝑀 |= 𝜑 iff 𝑟𝑀 |= 𝜑,

∙ 𝑀 |=𝐺 𝜑 iff ∀𝑠 ∈𝑊𝑀 , 𝑠 |= 𝜑 (global satisfaction).

We will write 𝑀 |= 𝑇 for a set of sentences 𝑇 whenever 𝑀 satisfies all
formulae in 𝑇 . Semantic entailment is defined as follows: if 𝜑 is a sentence
and 𝑇 a set of sentences, 𝑇 semantically entails 𝜑, written 𝑇 |= 𝜑 iff for all
models 𝑀 ∈ 𝒦, if 𝑀 |= 𝑇 then 𝑀 |= 𝜑. The class of models that satisfies
a formula 𝜑 is denoted by mod𝒦(𝜑) and the class of models that globally
satisfy a formula 𝜑, by mod𝐺𝒦(𝜑) (similarly for sets of sentences). A set
of sentences 𝑇 is called satisfiable iff mod𝒦(𝑇) ̸= ∅ (similarly for globally
satisfiable). The set of sentences true at a state 𝑠 is denoted by th(𝑠). The
theory of a model is defined as the theory of its root, th(𝑀) = th(𝑟𝑀). Two
models 𝑀,𝑁 are logically equivalent iff th(𝑀) = th(𝑁).

A few well-known facts about K𝑚 and its logic are summarised below
[BdRV01, Che80]. 𝑇 stands for a set of sentences and 𝜑 for a sentence of
ℒK.

∙ 𝑇 |= 𝜑 iff 𝑇 ⊢ 𝜑 (soundness and strong completeness of Λ with
respect to 𝒦).

∙ 𝑇 is satisfiable iff 𝑇 is consistent.

∙ If 𝑇 ⊢ 𝜑 and 𝜑 ⊢ 𝜓 then 𝑇 ⊢ 𝜓.

We will now turn to the semantical notions of bisimulation and simu-

lation.

Definition 2.3.2 (Bisimulation)
Let 𝑀,𝑁 be models and 𝐵 ⊆ 𝑊𝑀 × 𝑊𝑁 a non-empty relation. 𝐵 is a
bisimulation if

∙ It relates the initial states, (𝑟𝑀 , 𝑟𝑁) ∈ 𝐵,

∙ It respects the valuations, (𝑠, 𝑡) ∈ 𝐵 implies 𝑣𝑀 (𝑠) = 𝑣𝑁 (𝑡),

∙ If (𝑠, 𝑡) ∈ 𝐵 and 𝑠′ is an 𝑅𝑖𝑀 -successor of 𝑠 then there exists 𝑡′, an
𝑅𝑖𝑁 -successor of 𝑡, such that (𝑠′, 𝑡′) ∈ 𝐵, for all 1 ≤ 𝑖 ≤ 𝑚 (the forth
condition),

∙ If (𝑠, 𝑡) ∈ 𝐵 and 𝑡′ is an 𝑅𝑖𝑁 -successor of 𝑡 then there exists 𝑠′, an
𝑅𝑖𝑀 -successor of 𝑠, such that (𝑠′, 𝑡′) ∈ 𝐵, for all 1 ≤ 𝑖 ≤ 𝑚 (the back
condition). 2

If there exists a bisimulation between𝑀,𝑁 then𝑀 and 𝑁 are called bisim-

ilar, written 𝑀 ∼ 𝑁 and it follows that th(𝑀) = th(𝑁).

2.4. THE LOGIC ACTL 37

Definition 2.3.3 (Simulation)
Let𝑀,𝑁 be models and 𝑆 ⊆𝑊𝑀×𝑊𝑁 a non-empty relation on their state-
spaces. 𝑆 will be called a simulation iff it satisfies the first three clauses
in the definition of bisimulation, i.e. it must link the initial states, preserve
valuations and respect the accessibility relations but in one-way only (the
forth condition). 2

If there exists a simulation from 𝑀 to 𝑁 we write 𝑀 → 𝑁 or 𝑁 ←𝑀 and
say that 𝑁 simulates 𝑀 or that 𝑀 is simulated by 𝑁 . Whenever 𝑀 ← 𝑁
and𝑀 → 𝑁 we will say that𝑀 and 𝑁 are similar or simulation equivalent

and write 𝑀 � 𝑁 . It is easy to check that simulations are transitive and
reflexive.

A formula is called positive universal iff it is made up only from propo-
sitional letters, their negations, the propositional connectives ∧ and ∨ and
the universal modality 2𝑖. ℒPU is the subset of ℒK that consists of positive
universal formulae. If 𝑠 is a state then PU(𝑠) = ℒPU ∩ th(𝑠). If 𝑀 is a
model, then PU(𝑀) = PU(𝑟𝑀). Dually, a positive existential formula is
made up from 𝑝,¬𝑝,∧,∨ and 3𝑖. ℒPE and PE are defined similarly and are
duals of ℒPU and PU respectively. Note that the negation of a PU formula
is a PE one and vice versa. If 𝑃 is a set of PU sentences then 𝑃 𝑐 is the
complement of 𝑃 with respect to ℒPU, i.e. 𝑃 𝑐 = ℒPU ∖𝑃 . 𝑃 is defined as the
set that contains the negation of every formula in 𝑃 , i.e. 𝑃 = {¬𝜑 | 𝜑 ∈ 𝑃}.

We define 2*𝜑 to denote a set of sentences as follows,

2*𝜑 = {2𝑖1 . . .2𝑖𝑛𝜑 | ∀𝑛, 𝑗, 𝑖𝑗(𝑛 ≥ 0 ∧ 1 ≤ 𝑗 ≤ 𝑛 ∧ 1 ≤ 𝑖𝑗 ≤ 𝑚)}

2*𝑇 is defined similarly, but on sets of sentences rather than on formulae:

2*𝑇 =
⋃︁
𝜑∈𝑇

2*𝜑

If a model satisfies 2*𝑇 at its starting state then, obviously, it will have to
satisfy 𝑇 on all the states reachable from the root. Therefore, because of the
condition that we have imposed on the reachability of all states in a model,
it follows that mod𝐺𝒦(𝑇) = mod𝒦(2

*𝑇).

2.4 The logic ACTL

The logic ACTL [GL94] is a fragment of CTL [CES86], a branching-time
temporal logic well-known for its use in model checking.

As in the case of modal logic, 𝒜 will be a finite set of atomic propositions.

Definition 2.4.1 (The language ℒACTL)
The language ℒACTL is defined inductively:

38 CHAPTER 2. BACKGROUND

∙ All of the propositional letters 𝑝 ∈ 𝒜 and their negations are formulae,
i.e. 𝑝 ∈ ℒACTL and ¬𝑝 ∈ ℒACTL

∙ If 𝜑, 𝜓 ∈ ℒACTL then 𝜑 ∧ 𝜓 ∈ ℒACTL and 𝜑 ∨ 𝜓 ∈ ℒACTL.

∙ If 𝜑, 𝜓 ∈ ℒACTL then the formulae

– AX𝜑 (on all successors, 𝜑),

– A(𝜑U𝜓) (on all paths, 𝜑 until 𝜓),

– A(𝜑R𝜓) (on all paths, 𝜑 release 𝜓).

are all formulae in ℒACTL. 2

The usual abbreviations apply:

∙ AG𝜑 ≡ A(⊥R𝜑) (globally 𝜑) and

∙ AF𝜑 ≡ A(⊤U𝜑) (eventually 𝜑).

Models for ACTL are structures similar to Kripke models, apart from a
few differences.

Definition 2.4.2 (Transition systems with fairness constraints)
A tuple 𝑀 = ⟨𝑊𝑀 , 𝑆𝑀 ,𝒜𝑀 , 𝑣𝑀 ,→𝑀 ,ℱ𝑀 ⟩ is a model for ACTL with fair-
ness constraints whenever

∙ 𝑊𝑀 is a finite set of states,

∙ 𝑆𝑀 ⊆𝑊𝑀 is a set of initial states,

∙ 𝒜𝑀 ⊆ 𝒜 is a set of atomic propositions,

∙ 𝑣𝑀 :𝑊𝑀 → 2𝒜𝑀 is a valuation,

∙ →𝑀⊆𝑊𝑀 ×𝑊𝑀 is the accessibility (or transition) relation,

∙ ℱ ⊆ 2𝑊𝑀 is a set of fairness conditions. 2

It is obvious by the above definition that only finite models will be consid-
ered. Also, notice that instead of having just one starting state, now a set
of them is provided. This allows for more flexibility, since it allows a non-
deterministic choice as to which state the system will begin its execution
from. Another point of departure from the modal case is the incorporation
of the atomic propositions into the model. Again, this is ‘syntactic sugar’
that allows more compactness in the descriptions and representations of the
models. Notice also that we restrict the number of accessibility relations to
one: this relation can be viewed as the union of all the action-representing
accessibility relations. As is customary in the temporal logic literature we
will ignore these and focus on their union. Moreover, there is no necessity

2.4. THE LOGIC ACTL 39

for the states to be reachable by the initial states through the transition
relation: since the notion of satisfaction (defined below) is only local to the
initial states, there is no danger of ‘referring’ to unreachable states. Lastly,
the fairness conditions are the most important addition; as it will be seen
later, from the satisfaction relation of the language, they allow for the ex-
clusion from consideration of some of the computational paths exhibited by
the model.

As previously, |𝑀 | will denote the cardinality of the state-space of 𝑀 .
The class of all such models will be denoted byℳFTSF, with FTSF standing
for finite transition systems with fairness constrains.

Let 𝑀 be a model. An infinite sequence of states 𝜋 = 𝑠0𝑠1 . . . is a path
in 𝑀 iff for all 𝑖 ≥ 0, 𝑠𝑖, 𝑠𝑖+1 ∈ 𝑊𝑀 and 𝑠𝑖 →𝑀 𝑠𝑖+1. 𝜋𝑖 denotes the 𝑖-th
state in 𝜋. For a path 𝜋 in 𝑀 , inf(𝜋) ⊆ 𝑊𝑀 is the set of states 𝜋 visits
an infinite number of times. A path 𝜋 in 𝑀 is fair iff for all 𝑃 ∈ ℱ𝑀 ,
inf(𝜋)∩𝑃 ̸= ∅. Essentially, a path is fair if it visits all the fairness condition
sets infinitely often.

Definition 2.4.3 (Satisfaction of ACTL formulae)
Let 𝑀 be a model and 𝑠 ∈ 𝑊𝑀 a state. Satisfaction of an ACTL formula
on 𝑠 is defined inductively:

∙ The usual definitions apply for satisfaction of an atomic proposition,
a negated atomic proposition, conjunctions and disjunctions.

∙ 𝑀, 𝑠 |= AX𝜑 if and only if, for all fair paths 𝜋 in 𝑀 that start at 𝑠,
𝑀,𝜋1 |= 𝜑. AX corresponds to the modal 2 with the difference that
only the successors along fair paths are considered.

∙ 𝑀, 𝑠 |= A(𝜑U𝜓) if and only if, for every fair path 𝜋 in 𝑀 that starts
at 𝑠, there is an 𝑖 such that 𝑀,𝜋𝑖 |= 𝜓 and for all 𝑗 < 𝑖, 𝑀,𝜋𝑗 |= 𝜑.
In other words, 𝜑 until 𝜓.

∙ 𝑀, 𝑠 |= A(𝜑R𝜓) if and only if for every fair path 𝜋 in 𝑀 that starts
at 𝑠, for all 𝑖, 𝑀,𝜋𝑗 ̸|= 𝜑 for all 𝑗 < 𝑖, implies 𝑀,𝜋𝑖 |= 𝜓. This
is the dual of until in the sense that in full CTL it is the case that
A(𝜑R𝜓)↔ ¬A(¬𝜑U¬𝜓).

We will write 𝑀 |= 𝜑 iff for all 𝑠 ∈ 𝑆𝑀 , 𝑀, 𝑠 |= 𝜑 (whether the modal
or temporal satisfaction relation is meant by |= will be made clear by the
context). Accordingly,

modFTSF(𝜑) = {𝑀 ∈ℳFTSF |𝑀 |= 𝜑}

Similarly with modal logic, for any two formulae of ACTL, 𝜑 |= 𝜓 means
that for any model 𝑀 ∈ℳFTSF, 𝑀 |= 𝜑 implies 𝑀 |= 𝜓.

Next, the definition of fair simulation is presented. This concept was
introduced in [GL94] where it was called a homomorphism and is also known
as ∃-simulation [HKR97].

40 CHAPTER 2. BACKGROUND

Definition 2.4.4 (Fair simulation)
Let 𝐴,𝐵 be models with 𝒜𝐴 ⊇ 𝒜𝐵 and 𝛼, 𝛽 be states in 𝐴,𝐵 respectively.
A relation 𝐻 ⊆𝑊𝐴 ×𝑊𝐵 is a fair simulation from (𝐴,𝛼) to (𝐵, 𝛽) iff

1. (𝛼, 𝛽) ∈ 𝐻

2. For all 𝑎 ∈𝑊𝐴, 𝑏 ∈𝑊𝐵, (𝑎, 𝑏) ∈ 𝐻 implies

∙ 𝑣𝐴(𝑎) ∩ 𝒜𝐵 = 𝑣𝐵(𝑏)

∙ For every fair path 𝜋 = 𝑎0𝑎1 . . . in 𝐴 with 𝑎0 = 𝑎 there exists
a fair path 𝜋′ = 𝑏0𝑏1 . . . in 𝐵 with 𝑏0 = 𝑏 such that for every 𝑖,
𝐻(𝑎𝑖, 𝑏𝑖).

𝐻 is a fair simulation from 𝐴 to 𝐵, denoted 𝐵 ← 𝐴, iff for all 𝛼 ∈ 𝑆𝐴 there
is a 𝛽 ∈ 𝑆𝐵 such that (𝛼, 𝛽) ∈ 𝐻. 2

There are several differences with simulation, as seen in the previous
section. Firstly, there may be initial states in 𝐵 that do not correspond to
(initial) states in 𝐴, something not possible with simulation. Secondly, there
may be successors of a state 𝑎 ∈ 𝑊𝐴 that do not belong to any fair path
beginning at 𝑎. In that case, these successors do not impose any restrictions
in the refinements of 𝐴 as they necessarily would in the case of simulation.

ACTL consists purely of positive universal formulae. Therefore, fair
simulation trivially implies language-inclusion, i.e. 𝐴← 𝐵 implies th(𝐴) ⊆
th(𝐵). The converse is true as well, since we are only considering finite
models.

schemschemss

Chapter 3

Using BDDs to implement

Theory Change Operators

3.1 Introduction

An implementation of propositional theory change using a data structure
known as the Binary Decision Diagram is presented in this chapter. This
work is concerned with the general case of theory change (as defined by
sets of axioms) as well as with specific theory change operators from the
literature. Upper complexity bounds of these algorithms are produced. In
an effort to gain a better understanding of the empirical efficiency of the
algorithms involved, a fault diagnosis problem on combinational circuits is
presented, implemented and evaluated.

General algorithms are developed for theory change operators that can
be defined by faithful assignments for revisions and updates in sections 3.2.1
and 3.2.2. Proposals from the literature of theory change are examined and
implemented in sections 3.2.3, 3.2.4, 3.2.5 and 3.2.6. A formulation for fault
diagnosis of combinational boolean circuits is described in section 3.3.1.
This approach is implemented with BDD algorithms in section 3.3.2, and
its experimental performance is analysed in 3.3.3. Finally, work related to
this chapter is discussed in section 3.4.

3.2 Theory change operators as BDD algorithms

The approach covered in this chapter is concerned with implementation of
theory change operators in a finite, propositional language. As such, belief
sets can be represented by single formulae and the framework presented by
Katsuno and Mendelzon [KM89, KM91, KM92] applies. Formulae, in turn,
will be represented by their corresponding BDDs. The algorithms that will
be presented are geared towards the computation of the resulting epistemic
state from a theory change operation rather than query answering. In other

41

42 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

words, the algorithms will accept two arguments, the epistemic state, 𝜑,
and the formula to revise with, 𝜓, and will yield the representation of the
resulting epistemic state, 𝜑 * 𝜓, for some theory change operator *. In
contrast, a query answering algorithm would accept 𝜑, 𝜓, 𝜒 as arguments and
decide whether 𝜑 * 𝜓 |= 𝜒 without necessarily computing a representation
of 𝜑 * 𝜓.

Due to the way BDDs represent the valuations that satisfy the corre-
sponding formula, one may look at them semantically rather than syntac-
tically. In particular, the use of BDDs can serve as a counter-argument to
the popular belief in the area of theory change that representing epistemic
states by sets of possible models or worlds is less efficient than using belief
sets (e.g., [Gär92b]).

Using BDDs to denote the sets of models of formulae enables the direct
creation of algorithms implementing the theory change operators that have
a straightforward semantical definition. Moreover, since BDDs are canoni-
cal, the derived algorithms will be automatically syntax-independent: two
logically-equivalent epistemic states should remain logically-equivalent when
they are revised by equivalent formulae. This property does not necessarily
hold if the theory change operator is defined on a formula-based represen-
tation. While some researchers (e.g. [Neb96]) argue that this is desirable,
we believe that syntax-dependence should be avoided unless dictated by the
nature of the problem to solve.

Of course, the aim is for efficient algorithms implementing theory change.
However, the word ‘efficiency’ has to be used in a relative sense: the problem
of propositional theory change is known to be harder than propositional
satisfiability [EG92, Neb96, LS96]. Thus, a more precise restatement of this
aim is to provide methods that perform well in the ‘average’ case while
inevitably having an intractable worst-case complexity.

3.2.1 Revision defined by faithful assignment

With the aid of the macros described in section 2.2.3, theorem 2.1.1 can be
used for computing 𝜓 ∘𝜇, given a faithful assignment for a revision operator
∘. The faithful assignment 𝑓 is a function which, given a formula 𝜓, returns
an ordering ≤𝜓. An algorithm f will be assumed, representing 𝑓 , which
takes a BDD over a vector of variables 𝑝 (for 𝜓) and returns another BDD
over 𝑝,𝑝′, (for ≤𝜓).

By the theorem, mod(𝜓∘𝜇) = min𝑓(𝜓)(mod(𝜇)). Therefore, given BDDs
𝐵𝜓, 𝐵𝜇 for formulae 𝜓, 𝜇, the BDD for 𝜓 ∘ 𝜇 can be computed as

𝐵𝜓 ∘𝐵𝜇 = min(f(𝐵𝜓), 𝐵𝜇)

where the operator min on BDDs for total relations is described in section
2.2.3. Expanding the macros in the above formula gives

𝐵𝜇 ∧ ∀𝑝′. (𝐵𝜇[𝑝′/𝑝] → f(𝐵𝜓))

3.2. THEORY CHANGE OPERATORS AS BDD ALGORITHMS 43

Suppose that the number of propositional variables is 𝑛 (in a single copy
of the variables), the worst-case time complexity of f is 𝑇f(·) (as a function
of the size of the input-BDD) and that the size of the resulting BDD is
|f(𝐵𝜓)|. An upper bound for the worst-case complexity of the revision can
be computed as follows:

Operation Time Complexity Result Size
𝐵𝜇[𝑝

′/𝑝] 𝑂(|𝐵𝜇|) 𝑂(|𝐵𝜇|)
f 𝑇f(|𝐵𝜓|) |f (𝐵𝜓)|
∀𝑝′. (·→ ·) 𝑂(|𝐵𝜇| · |f(𝐵𝜓)| · 2

2𝑛) 𝑂(2𝑛)
𝐵𝜇 ∧ · 𝑂(|𝐵𝜇| · 2

𝑛) 𝑂(2𝑛)

Thus, an upper bound of the complexity of the whole operation can be
obtained as follows; the overall time complexity is 𝑂(|𝐵𝜇|) + 𝑇f(|𝐵𝜓|) +
𝑂(|𝐵𝜇| · |f(𝐵𝜓)| ·2

2𝑛)+𝑂(|𝐵𝜇| ·2
𝑛). But any complexity function in 𝑂(|𝐵𝜇|)

will necessarily be a member of 𝑂(|𝐵𝜇| · 2𝑛) and similarly, any complexity
function in 𝑂(|𝐵𝜇| · 2𝑛) will also belong to 𝑂(|𝐵𝜇| · |f(𝐵𝜓)| · 22𝑛). Since the
complexity of f is unknown, the bound reduces to

𝑂
(︀
𝑇f(|𝐵𝜓|) + |𝐵𝜇| · |f(𝐵𝜓)| · 2

2𝑛
)︀

This upper bound measure may not be indicative of the true situation be-
cause:

∙ Empirical evidence in the context of model checking indicates that the
practical efficiency of these operations is much better than their worst
case.

∙ This result is based on non-tight, pessimistic upper bounds for the
worst-case complexity of the operators involved. It is telling, for ex-
ample, that for the result size of the impliesForall operation, we are
forced to consider the worst case possible, with no reference to the
input sizes.

3.2.2 Update defined by faithful assignment

Similarly to theorem 2.1.1, theorem 2.1.2 allows for the computation of 𝜑◇𝜓,
given a faithful assignment for an update operator ◇. In the context of theory
updates a faithful assignment is a function from models to orderings on
models and as such it can be represented by a BDD and not necessarily by an
algorithm on BDDs. In particular, the faithful assignment 𝑓 is represented
as a BDD 𝐵𝑓 over 𝑝,𝑝′,𝑝′′. Given values for 𝑝′′, it becomes a BDD over
𝑝,𝑝′ representing a partial ordering.

Therefore,
mod(𝜓 ◇ 𝜇) =

⋃︁
𝑀∈mod(𝜓)

min
≤𝑀

(mod(𝜇))

44 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

may be computed. 𝐵𝑓 can be fed its inputs in any order and it is conve-
nient to manipulate its 𝑝,𝑝′ parameters first. Using the definition of min
in section 2.2.3 for partial orderings, the following BDD may be calculated
first

min(𝐵𝑓 , 𝐵𝜇)

which, given 𝑝′′ representing 𝑀 , computes min≤𝑀 (mod(𝜇)). This BDD
is still parameterised by 𝑝′′; what remains is to take the union over all
𝑀 ∈ mod(𝜓). The final answer for the BDD representing 𝜓 ◇ 𝜇 in terms of
the BDDs 𝐵𝑓 , 𝐵𝜓 and 𝐵𝜇 is therefore

∃𝑝′′. (𝐵𝜓[𝑝′′/𝑝]∧ min(𝐵≤𝑓 , 𝐵𝜇))

which when expanded gives (where �̸�< = ¬(𝐵≤𝑓 ∧¬𝐵≤𝑓 [𝑝′/𝑝,𝑝/𝑝′]))

∃𝑝′′. (𝐵𝜓[𝑝′′/𝑝]∧ ∀𝑝′.(𝐵𝜇[𝑝′/𝑝] → �̸�<))

The simultaneous double replacement in �̸�< can be performed as follows.
Assume the variable ordering in the BDDs is such that 𝑝𝑖 precedes 𝑝′𝑖 which
in turn precedes 𝑝′′𝑖 . It will be extended to include a fourth, temporary
copy of the propositional variables 𝑡 which will be placed in the ordering
after the variables we want to swap, but before 𝑝′′. It is easy to see, then,
that the substitution 𝐵𝑓 [𝑡/𝑝′] does not necessitate a re-ordering (i.e. it is
a simple renaming) and thus can be performed in time 𝑂(|𝐵𝑓 |). Similarly,
the substitution 𝐵𝑓 [𝑡/𝑝

′][𝑝′/𝑝] is of the same linear complexity. Lastly,
we want to perform 𝐵𝑓 [𝑡/𝑝

′][𝑝′/𝑝][𝑝/𝑡] to complete the reversal. This last
operation requires a re-ordering, so andExists may be used to perform
it. Let 𝐵 = 𝐵𝑓 [𝑡/𝑝

′][𝑝′/𝑝]. Then, ∃𝑡. (𝐵 ∧𝐵↔) needs to be computed,
where 𝐵↔ is the BDD of the conjunction of the bi-implications between
corresponding variables in 𝑡 and 𝑝. 𝐵↔ is easily seen to be of size 𝑂(𝑛). An
upper bound of the complexity of this replacement is 𝑂

(︀
|𝐵𝑓 | · 𝑛 · 2

3𝑛
)︀
.

Now, we can turn to the worst-case complexity of the whole operation:

Operation Time Complexity Result Size
𝐵𝑓 [𝑝

′/𝑝,𝑝/𝑝′] 𝑂(|𝐵𝑓 | · 𝑛 · 2
3𝑛) 𝑂(23𝑛)

𝐵̸< 𝑂(|𝐵𝑓 | · 2
3𝑛) 𝑂(23𝑛)

∀𝑝′. (·→ ·) 𝑂(|𝐵𝜇| · 2
3𝑛 · 23𝑛) 𝑂(22𝑛)

∃𝑝′′. (·∧ ·) 𝑂(|𝐵𝜓| · 2
2𝑛 · 22𝑛) 𝑂(2𝑛)

Thus, an upper bound for the worst-case complexity of the BDD algorithm
for update is 𝑂(|𝐵𝜇| · 26𝑛).

3.2.3 Borgida’s operator

An interpretation 𝑁 for a propositional language can be thought as a set
containing only the propositional atoms that hold in 𝑁 . The symmetric

3.2. THEORY CHANGE OPERATORS AS BDD ALGORITHMS 45

set-difference 𝑁△𝑀 of two interpretations 𝑁 and 𝑀 is the set containing
all the propositional atoms whose values differ in 𝑁 and in 𝑀 .

𝑁△𝑀 = (𝑁 ∖𝑀) ∪ (𝑀 ∖𝑁)

Given a formula 𝜇 and an interpretation 𝑁 , the set of differences of 𝑁 and
𝜇 can be defined as:

diff(𝑁,𝜇) = {𝑁△𝑀 |𝑀 ∈ mod(𝜇)}

Borgida introduced a revision operator ∘𝐵 in [Bor85] that orders inter-
pretations according to the set-inclusion of symmetric set-differences. The
definition of 𝜓 ∘𝐵 𝜇 has two parts:

∙ If 𝜓 ∧ 𝜇 is consistent, then 𝜓 ∘𝐵 𝜇 = 𝜓 ∧ 𝜇 (c.f. with axiom R2).

∙ Otherwise, 𝑀 ∈ mod(𝜇) is a model of 𝜓 ∘𝐵 𝜇 if there is a model 𝑁 of
𝜓, such that

𝑁△𝑀 ∈ min
⊆

(diff(𝑁,𝜇))

Borgida’s revision is known to satisfy R1–R5 but not R6 [KM91]. As such, it
is not definable by a faithful assignment for revisions, as the representation
theorem 2.1.1 dictates. Let us look how this is implemented in BDDs.

Firstly, 𝐵𝜓 ∧𝐵𝜇 must be computed and checked for consistency. If it is
consistent, then this is also the result of the revision.

If 𝜓 ∧ 𝜇 is inconsistent then the models of the revision are

mod(𝜓 ∘𝐵 𝜇) =

=

{︂
𝑀 ∈ mod(𝜇)

⃒⃒⃒
⃒ ∃𝑁.

(︂
𝑁 ∈ mod(𝜓) ∧𝑁△𝑀 ∈ min

⊆
(diff(𝑁,𝜇))

)︂}︂
= {𝑀 ∈ mod(𝜇) | ∃𝑁. (𝑁 ∈ mod(𝜓) ∧

∀𝐿. (𝐿 ∈ mod(𝜇)→ 𝑁△𝐿 ̸⊂ 𝑁△𝑀))}

Therefore, the standard BDD algorithms can be used to implement ∘𝐵 if a
BDD 𝐵𝑅 that represents the formula 𝑁△𝐿 ̸⊂ 𝑁△𝑀 can be constructed.
Assuming that this BDD has variables 𝑝,𝑝′,𝑝′′ for 𝑀,𝑁,𝐿 respectively, the
BDD algorithm ∘𝐵 implementing Borgida’s revision will be:

𝐵𝜇 ∧ ∃𝑝′. (𝐵𝜓[𝑝′/𝑝] ∧ ∀𝑝′′. (𝐵𝜇[𝑝′′/𝑝] → 𝐵𝑅))

Now, let us turn to the construction of the BDD 𝐵𝑅. The propositional
variables will be ordered from 1 to 𝑛 with an arbitrary ordering. The truth
value of the 𝑖-th propositional atom of an interpretation 𝑀 will be denoted
as 𝑀𝑖. The symmetric set-difference of two models can be expressed as a

46 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

boolean operation (where (𝑀△𝑁)𝑖 is the truth value of the 𝑖-th proposi-
tional variable of the symmetrical set-difference between 𝑀 and 𝑁)

(𝑀△𝑁)𝑖 = ¬(𝑀𝑖 ↔ 𝑁𝑖) =𝑀𝑖 ⊕𝑁𝑖

The symbol ⊕ denotes the xor operation. Set-inclusion of the symmetric
set-differences can then be expressed as

𝑁△𝐿 ⊆ 𝑁△𝑀 iff
𝑛⋀︁
𝑖=1

𝑁𝑖 ⊕ 𝐿𝑖 → 𝑁𝑖 ⊕𝑀𝑖

and consequently, strict inclusion as

𝑁△𝐿 ⊂ 𝑁△𝑀 iff

(︃
𝑛⋀︁
𝑖=1

𝑁𝑖 ⊕ 𝐿𝑖 → 𝑁𝑖 ⊕𝑀𝑖

)︃
∧¬

(︃
𝑛⋀︁
𝑖=1

𝑁𝑖 ⊕𝑀𝑖 → 𝑁𝑖 ⊕ 𝐿𝑖

)︃

from which by negation a formula for computing 𝑁△𝐿 ̸⊂ 𝑁△𝑀 is derived.
This formula can be converted to a BDD 𝐵𝑅. This BDD will represent the
ordering induced by 𝑁△𝐿 ̸⊂ 𝑁△𝑀 , when an 𝑁 is chosen.

���������
�������
�

���������

�������

	�		�	
�

�

�������

𝑣1 ⊕1
1𝑧1

⊕1
2𝑤1

. . .

. . .

𝑣𝑛 ⊕𝑛
1𝑧𝑛

⊕𝑛
2𝑤𝑛

→1

1

→1

2
→𝑛

2

→𝑛

1

𝑣△𝑧 ̸⊂ 𝑣△𝑤

∧𝑛
1

∧𝑛
2

Figure 3.1: Circuit that computes 𝑁△𝐿 ̸⊂ 𝑁△𝑀 .

Lastly, of interest are the sizes of the BDDs involved and the upper
complexity bounds for Borgida’s revision as a BDD algorithm. The first step
of the algorithm is the consistency check for 𝐵𝜓∧𝐵𝜇, which has a worst-case
complexity of 𝑂(|𝐵𝜓| · |𝐵𝜇|). If the two formulae are inconsistent then we
need to execute the algorithm given above. Central to its complexity will
be the size of the BDD 𝐵𝑅. To estimate that, a boolean circuit to compute
𝑁△𝐿 ̸⊂ 𝑁△𝑀 is presented in figure 3.1, where ⊕ is the xor-gate and →
the implies-gate. The following linear ordering on gates and inputs my be
defined (order is from left to right, top to bottom):

𝑁1, 𝐿1, ⊕1

1
, 𝑀1, ⊕1

2
, →1

1
, →1

2
,

𝑁2, 𝐿2, ⊕2

1
, 𝑀2, ⊕2

2
, →2

1
, →2

2
, ∧2

1
, ∧2

2
,

.

.

.

𝑁𝑛−1, 𝐿𝑛−1, ⊕𝑛−1
1

, 𝑀𝑛−1, ⊕𝑛−1
2

, →𝑛−1
1

, →𝑛−1
2

, ∧𝑛−1
1

, ∧𝑛−1
2

,

𝑁𝑛, 𝐿𝑛, ⊕𝑛
1
, 𝑀𝑛, ⊕𝑛

2
, →𝑛

1
, →𝑛

2
, ∧𝑛

1
, ∧𝑛

2
,

¬, ∧, ¬

It is easy to check that under this ordering the forward cross section at each
gate or input of the circuit is at most a constant: it does not depend in any

3.2. THEORY CHANGE OPERATORS AS BDD ALGORITHMS 47

way on 𝑛. Thus by theorem 2.2.1, there exists a BDD 𝐵𝑅 representing this
circuit of size 𝑂(𝑛).

Using this result upper bounds for the complexity of

𝐵𝜇 ∧ ∃𝑝′. (𝐵𝜓[𝑝′/𝑝] ∧ ∀𝑝′′. (𝐵𝜇[𝑝′′/𝑝] → 𝐵𝑅))

may be produced:

Operation Time Complexity Result Size
𝐵𝜇[𝑝

′′/𝑝] 𝑂(|𝐵𝜇|) 𝑂(|𝐵𝜇|)
∀𝑝′′. (·→ ·) 𝑂(|𝐵𝜇| · 𝑛 · 2

3𝑛) 𝑂(22𝑛)
𝐵𝜓[𝑝

′/𝑝] 𝑂(|𝐵𝜓|) 𝑂(|𝐵𝜓|)
∃𝑝′. (·∧ ·) 𝑂(|𝐵𝜓| · 2

2𝑛 · 22𝑛) 𝑂(2𝑛)
𝐵𝜇 ∧ · 𝑂(|𝐵𝜇| · 2

𝑛) 𝑂(2𝑛)

Therefore, an upper bound of the worst-case time complexity of the BDD
algorithm for Borgida’s revision is 𝑂(|𝐵𝜓| · 24𝑛).

3.2.4 Satoh’s operator

Given two formulae 𝜓 and 𝜇, the set of differences of 𝜓 and 𝜇 is defined by
Satoh [Sat88] as

diff(𝜓, 𝜇) =
⋃︁

𝑁∈mod(𝜓)

diff(𝑁,𝜇)

The revision operator ∘𝑆 proposed by Satoh in [Sat88] is defined in first-
order logic. Its restriction to finite propositional logic, as described in
[KM91], is a ‘global’ version of Borgida’s revision. When revising 𝜓 by
𝜇, instead of considering individually the models of 𝜓, Satoh’s notion of
minimality relies on both 𝜓 and 𝜇 simultaneously. An interpretation 𝑀 is a
model of 𝜓 ∘𝑆 𝜇 if there exists a model 𝑁 of 𝜓 such that 𝑁△𝑀 is a minimal
element of diff(𝜓, 𝜇). Satoh’s revision is known to satisfy R1–R5 but not
R6 [KM91].

It is easy to express Satoh’s revision as a BDD algorithm, using much of
the construction presented above for Borgida’s operator. The set of minimal
pairs min⊆(diff(𝜓, 𝜇)) can be expressed as

min
⊆

(diff(𝜓, 𝜇)) = {𝑁△𝑀 | 𝑁 ∈ mod(𝜓) ∧𝑀 ∈ mod(𝜇)∧

∀𝐿∀𝐾. (𝐿 ∈ mod(𝜓) ∧𝐾 ∈ mod(𝜇)→ 𝐿△𝐾 ̸⊂ 𝑁△𝑀)}

Therefore the models of the revision are:

mod(𝜓 ∘𝑆 𝜇) = {𝑀 | 𝑀 ∈ mod(𝜇) ∧ ∃𝑁. (𝑁 ∈ mod(𝜓)∧

∀𝐿∀𝐾. (𝐿 ∈ mod(𝜓) ∧𝐾 ∈ mod(𝜇)→ 𝐿△𝐾 ̸⊂ 𝑁△𝑀))}

48 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

Thus, the BDD algorithm ∘𝑆 will be

𝐵𝜇 ∧ ∃𝑝′. (𝐵𝜓[𝑝′/𝑝]∧ ∀𝑝′′,𝑝′′′. (𝐵𝜓[𝑝′′/𝑝]∧𝐵𝜇[𝑝
′′′/𝑝] → 𝐵𝑅))

where 𝐵𝑅 is a BDD that represents 𝐾△𝐿 ̸⊂ 𝑁△𝑀 (𝐵𝑅 is assumed to
contain variables 𝑝,𝑝′,𝑝′′,𝑝′′′ that correspond to 𝑀,𝑁,𝐾,𝐿 respectively).
This BDD can be constructed from the corresponding formula in the same
manner as the one for Borgida’s revision.

It is trivial to modify the circuit for Borgida’s ordering to produce one
that decides 𝐾△𝐿 ̸⊂ 𝑁△𝑀 , without changing its forward cross section.
Therefore, there is an appropriate variable ordering for which the BDD 𝐵𝑅
that represents this ordering is of size𝑂(𝑛). With this result we can compute
the upper complexity bounds:

Operation Time Complexity Result Size
𝐵𝜓[𝑝

′′/𝑝]∧𝐵𝜇[𝑝
′′′/𝑝] 𝑂(|𝐵𝜓| · |𝐵𝜇|) 𝑂(|𝐵𝜓| · |𝐵𝜇|)

∀𝑝′′,𝑝′′′. (·→ ·) 𝑂(|𝐵𝜓| · |𝐵𝜇| · 𝑛 · 2
4𝑛) 𝑂(22𝑛)

∃𝑝′. (·∧ ·) 𝑂(|𝐵𝜓| · 2
2𝑛 · 22𝑛) 𝑂(2𝑛)

𝐵𝜇 ∧ · 𝑂(|𝐵𝜇| · 2
𝑛) 𝑂(2𝑛)

Thus, an upper bound for the worst-case complexity of ∘𝑆 is 𝑂(|𝐵𝜓| · |𝐵𝜇| ·
𝑛 · 24𝑛).

3.2.5 Dalal’s operator

The revision operator proposed in [Dal88] takes the distance between two
interpretations to be the cardinality of their symmetric set-difference (also
known as the Hamming distance):

𝑑(𝑀,𝑁) = |𝑀△𝑁 |

where the | · | operator is set-cardinality. The distance of a formula 𝜓 and
an interpretation 𝑁 is defined to be

𝑑(𝜓,𝑁) = min {𝑑(𝑀,𝑁) |𝑀 ∈ mod(𝜓)}

Using this notion of distance, a faithful assignment can be defined as

𝑀 ≤𝜓 𝑁 iff 𝑑(𝜓,𝑀) ≤ 𝑑(𝜓,𝑁)

The induced ordering is clearly total, reflexive and transitive, and thus the
derived operator is a revision by theorem 2.1.1.

In order to express Dalal’s revision as an operation on BDDs, a BDD op-
eration representing the faithful assignment must be constructed. Trying to
translate its definition directly into a BDD algorithm would be tedious and
most probably highly inefficient, because of the two minimisation operations

3.2. THEORY CHANGE OPERATORS AS BDD ALGORITHMS 49

implicit in 𝑑(𝜓,𝑀) and 𝑑(𝜓,𝑁). Instead, the definition is proved below to
be equivalent to a somewhat simpler relation between models. Specifically,
𝑑(𝜓,𝑀) ≤ 𝑑(𝜓,𝑁) if and only if there exists a model 𝐾 of 𝜓 the distance
of which to 𝑀 is less than or equal to the distance between any model of 𝜓
and 𝑁 , or in other words,

∃𝐾. (𝐾 ∈ mod(𝜓) ∧ ∀𝐿. (𝐿 ∈ mod(𝜓)→ |𝑀△𝐾| ≤ |𝑁△𝐿|))

Left-to-right: if 𝑑(𝜓,𝑀) ≤ 𝑑(𝜓,𝑁) then min {𝑑(𝐿,𝑀) | 𝐿 ∈ mod(𝜓)} =
𝛼 and min {𝑑(𝐿,𝑁) | 𝐿 ∈ mod(𝜓)} = 𝛽 and 𝛼 ≤ 𝛽. But then there must
exist a model 𝐾 ∈ mod(𝜓) such that 𝑑(𝐾,𝑀) = 𝛼 and a model 𝐿 ∈ mod(𝜓)
with 𝑑(𝐿,𝑁) = 𝛽. By the definition of 𝛽 it is obvious that 𝛽 ≤ 𝑑(𝐿′, 𝑁) for
all 𝐿′ ∈ mod(𝜓) and as such, 𝛼 ≤ 𝑑(𝐿′, 𝑁), or 𝑑(𝐾,𝑀) ≤ 𝑑(𝐿′, 𝑁) for all
𝐿′ ∈ mod(𝜓).

Right-to-left: we assume that there exists a model 𝐾 ∈ mod(𝜓) such
that 𝑑(𝐾,𝑀) ≤ 𝑑(𝐿,𝑁) for all 𝐿 ∈ mod(𝜓). Since we are working in a
finite propositional language, the existence of minimal models is trivial to
prove. Therefore, minimums exist for the sets min {𝑑(𝐿,𝑀) | 𝐿 ∈ mod(𝜓)}
and min {𝑑(𝐿,𝑁) | 𝐿 ∈ mod(𝜓)}, which we call 𝛼 and 𝛽 respectively. Ob-
viously, 𝛼 ≤ 𝑑(𝐾,𝑀). Moreover, again because of the finiteness of the
interpretations, 𝑑(𝐾,𝑀) ≤ 𝛽 therefore 𝛼 ≤ 𝛽.

Assuming that the ordering |𝑀△𝐾| ≤ |𝑁△𝐿| is represented by a BDD
𝐵𝑅 with variables 𝑝,𝑝′,𝑝′′,𝑝′′′ corresponding to 𝑀,𝐾,𝑁,𝐿 respectively,
then the BDD algorithm for the faithful assignment is:

f𝐷 = ∃𝑝′′′. (𝐵𝜓[𝑝′′′/𝑝]∧ ∀𝑝′′′′. (𝐵𝜓[𝑝′′′′/𝑝] → 𝐵𝑅))

and the BDD algorithm for Dalal’s revision will be

𝐵𝜓 ∘𝐷 𝐵𝜇 = min(f𝐷(𝐵𝜓), 𝐵𝜇)

where min is the macro defined for total relations.
We have not yet produced a BDD for |𝑀△𝐾| ≤ |𝑁△𝐿|. This will be

achieved indirectly while at the same time producing upper bounds for its
complexity, by constructing a boolean circuit that computes the result. The
translation from the (combinational) circuit notation to boolean formulae is
straightforward; then the formula can be converted to a BDD as usual.

This boolean circuit, when given four interpretations 𝑀 , 𝑁 , 𝐿 and 𝐾 in
the form of binary vectors, decides whether 𝑑(𝑀,𝐾) ≤ 𝑑(𝑁,𝐿). Thus, in
order to compare |𝑀△𝐾| and |𝑁△𝐿| we need a way to count how many
propositional variables are true in each set-difference and compare those
counts. These counts will be binary numbers representing how many 1s
occur in those differences. The maximum number of differences possible is
obviously 𝑛, thus these binary numbers need only have 𝑘 = ⌈log2 𝑛⌉ bits.

A construction made of 𝑛 𝑘-bit adders in sequence can be used to do the
counting of bits set to 1 in 𝑁△𝐿 (see left-half of figure 3.2). Blocks labelled

50 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

0

0

0 0 0

0

0

0

0 0

.

.

.

0

𝑆1
1

𝑆1
2

𝑆1
𝑘

. . .

. . .

0

0

0

𝐴𝑛
1

𝐴𝑛
2

𝐴1

1

𝐴1

2

(𝑣△𝑦)1 (𝑣△𝑦)𝑛
𝑆2
1

𝑆2
2

(𝑤△𝑥)2
𝑆𝑛
1

𝑆𝑛
2

. . .

. . .

(𝑤△𝑥)1 (𝑤△𝑥)𝑛

0

.

.

.

.

.

.

. . .

0

0

0
𝐴𝑛
𝑘

𝐴1

𝑘

.

.

.

𝑆2
𝑘

.

.

.

𝑆𝑛
𝑘

. . .

. . .

|𝑤△𝑥| ≤ |𝑣△𝑦|

Figure 3.2: Circuit to decide |𝑀△𝐾| ≤ |𝑁△𝐿|.

𝐴𝑖𝑗 are full-adders. These blocks are simple binary circuits that, given two
input bits 𝑎, 𝑏 and a carry bit 𝑐, they calculate the sum 𝑜 and the produced
carry bit 𝑐′:

𝑜 = 𝑎⊕ 𝑏⊕ 𝑐

𝑐′ = (𝑎 ∧ 𝑏) ∨ (𝑐 ∧ (𝑎⊕ 𝑏))

Each column in the left-half of figure 3.2 forms a 𝑘-bit adder. By connecting
zeros to all bits of the first argument except the first one, where (𝑁△𝐿)𝑖
is connected, we ensure that the 𝑖-th bit of the difference is added to the
second argument, which holds the results of the counting so far.

In order to compare the count we get from the left-half of figure, a
structure made from subtracters 𝑆𝑖𝑗 is used in order to count down the
1s in 𝑀△𝐾, seen in the right-half of figure 3.2. Similar to the full-adder,
the unit 𝑆𝑖𝑗 is a boolean circuit that given inputs 𝑎, 𝑏 and an input carry 𝑐
calculates the difference 𝑜 and the produced carry bit 𝑐′:

𝑜 = 𝑎⊕ 𝑏⊕ 𝑐

𝑐′ = (𝑏 ∧ 𝑐) ∨ (¬𝑎 ∧ (𝑏⊕ 𝑐))

If, while counting down, the subtraction produces a carry bit then |𝑀△𝐾| >
|𝑁△𝐿|. Thus, the existence of a carry bit is preserved by taking the disjunc-
tion of all carry bits produced by the subtraction stages and by inverting
that value the circuit decides |𝑀△𝐾| ≤ |𝑁△𝐿|.

In order to apply theorem 2.2.1, we define an ordering over the blocks
of the circuit:

3.2. THEORY CHANGE OPERATORS AS BDD ALGORITHMS 51

(𝑁△𝐿)1, 𝐴1

1
, . . . , 𝐴1

𝑘,

.

.

.

(𝑁△𝐿)𝑛, 𝐴𝑛
1
, . . . , 𝐴𝑛𝑘 ,

(𝑀△𝐾)1, 𝑆1
1
, . . . , 𝑆1𝑘, ∨,

.

.

.

(𝑀△𝐾)𝑛, 𝑆𝑛
1
, . . . , 𝑆𝑛𝑘 , ∨, ¬

It is easy to see that on each block, the forward cross section is at most 𝑘+𝐶
where 𝐶 is a constant and that the reverse cross section is always zero. Thus,
the forward width of the circuit is 𝑘+𝐶 and the bound given by the theorem
is 4𝑛 · 2𝑘+𝐶 = 𝑂(𝑛2), because 𝑘 = ⌈log2 𝑛⌉. Several optimisations can be
made on the circuit appearing in figure 3.2, e.g., by replacing blocks with
known output with appropriate constants. The forward width of the circuit,
however, does not change. Therefore there exists a BDD of size 𝑂(𝑛2) that
represents |𝑀△𝐾| ≤ |𝑁△𝐿|.

We now turn to the worst-case complexity of these BDD algorithms. As
noted above, the algorithm for the faithful assignment is

∃𝑝′′′. (𝐵𝜓[𝑝′′′/𝑝]∧ ∀𝑝′′′′. (𝐵𝜓[𝑝′′′′/𝑝] → 𝐵𝑅))

Operation Time Complexity Result Size
∀𝑝′′′′. (·→ ·) 𝑂(|𝐵𝜓| · 𝑛

2 · 24𝑛) 𝑂(23𝑛)
∃𝑝′′′. (·∧ ·) 𝑂(|𝐵𝜓| · 2

3𝑛 · 23𝑛) 𝑂(22𝑛)

Therefore, an upper bound for the worst-case time complexity of the BDD
algorithm for the faithful assignment is 𝑂(|𝐵𝜓| · 26𝑛). Thus, in view of the
result of section 3.2.1, the derived upper bound for the worst-case time com-
plexity of the revision is 𝑂

(︀
|𝐵𝜓| · 2

6𝑛 + |𝐵𝜇| · 2
2𝑛 · 22𝑛

)︀
= 𝑂

(︀
|𝐵𝜓| · 2

6𝑛
)︀
.

3.2.6 Winslett’s operator

Winslett introduced an update operator in [Win88]. The ordering used in
this operator is defined using the set-inclusion of symmetric set-differences

𝑀 ≤𝐿 𝑁 iff 𝐿△𝑀 ⊆ 𝐿△𝑁

which is, clearly, a partial order and the mapping is a faithful assignment.
As noted in [KM92], Winslett’s operator coincides with Borgida’s when 𝜓
and 𝜇 are inconsistent. In other words, in Winslett’s update the second
step of the algorithm for Borgida’s revision is always used, so the results in
section 3.2.3 carry over here unchanged.

52 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

3.3 Fault diagnosis

In this section, a formulation of fault diagnosis as a special kind of the-
ory change is presented, along with experimental results gathered from an
implementation of the corresponding BDD algorithm. Our goal is not to
formulate a fully-fledged theory for fault diagnosis, nor to prove that the
best method for fault diagnosis has to use theory change. The aim is to
demonstrate the BDD algorithms presented, in a medium-sized example.
To that end, we formulate a method for fault diagnosis that works in a well-
studied class of systems, combinational boolean circuits, and investigate its
complexity in practice.

3.3.1 Fault diagnosis of boolean combinational circuits

Systems can develop faults that make them deviate from their specifica-
tions. Given a description of a physical system and an observation of the
system (usually, an input-output observation) that is inconsistent with its
specification, the problem of fault diagnosis is to deduce which components
of the system are faulty.

Since we are interested in discovering which parts of the system are mal-
functioning, the system description cannot be just of a functional type but
must include the description of atomic parts or components. The behaviour
of a component will constitute a dependency between its inputs and out-
puts. However, when such a component is faulty its input-output behaviour
is not restricted in any way.

Reiter approached this problem from an abstract point of view in [Rei87].
In his formulation there is an abnormality predicate ab(𝑥) ranging over
the set of components. When such an abnormality predicate is false for a
component 𝑐 then 𝑐 must behave as specified. So, for each component 𝑐 we
have a rule

¬ab(𝑐)→ spec(𝑐, obs)

where spec(𝑐, obs) is a predicate that is true if and only if the observation
obs complies with the predefined behaviour of component 𝑐. Essentially,
each such rule constitutes the specification of the component it applies to:
it is the statement that if the component is functioning normally, then its
output will depend in a pre-defined way on its inputs. The set of these
rules for all components in a system are called integrity constraints of the
system.

In the same paper, Reiter points out that his formulation is strongly
related to non-monotonic reasoning. As theory change is known to have
strong links to non-monotonic reasoning, many researchers have proposed
revision as a method of fault diagnosis (e.g., [Win88, Dal88]). The basis
of fault diagnosis as theory change is that an observer of the system has

3.3. FAULT DIAGNOSIS 53

two kinds of beliefs about the physical system before observing any of its
behaviour:

∙ that the integrity constraints hold,

∙ and that no components are faulty.

Now, suppose that a behaviour of the system is observed that is inconsistent
with the initial belief. Having chosen an appropriate theory change operator,
one may revise the initial belief with the observation, since the observed
behaviour implies that the initial belief is false. The intention is that, after
revising, the resulting epistemic state should imply which components will
explain the observed behaviour if considered to be faulty.

It is obvious that this operation must not retract the part of the ini-
tial belief that concerns the integrity constraints, as that would amount to
specification change, rather than the development of faults in the system.
Therefore, the operation must preserve the truth of the integrity constraints
and prefer giving up other beliefs while revising. In this case, we shall say
that the operation protects the integrity constraints.

Since we are interested in implementations of theory change in a finite
propositional language, a natural application is fault diagnosis of combina-
tional boolean circuits. These are boolean circuits that do not incorporate
components with memory, such as FLIP-FLOPs. Such a circuit consists of
a finite number 𝑔 of unary or binary gates.1 We define 𝑛𝐼 propositional
variables 𝐼𝑖 corresponding to the primary inputs of the circuit (at most 2𝑔).
For each gate 𝑖, we define a propositional variable 𝑁𝑖, its normality pred-

icate (which will be the negation of the abnormality predicate mentioned
earlier), as well as 𝑂𝑖, its output value2. The input(s) of each gate will
either be primary input(s) or output(s) of other gates. The circuit has also
𝑛𝑃𝑂 primary outputs, denoted as 𝑃𝑂𝑖, which form a subset of the output
values 𝑂𝑖 (at most 𝑔 if no repetitions of results are allowed). Output values
of gates not belonging to the set of primary outputs are called intermediate
results.

Therefore, for a circuit of 𝑔 gates we define 𝑛𝐼 + 2𝑔 (at most 4𝑔) pro-
positional variables. However, not all valuations of these 𝑛𝐼 + 2𝑔 variables
are possible states the circuit can be found in, even if faulty; if, in some
valuation, the normality predicate of a gate is true then its input-output
behaviour is fully determined and thus, its output can only assume one
value out of the two possible. The set of interpretations allowed under the
specification of the circuit is the set of valuations that satisfy its integrity

1The presented method can be easily generalised for gates of any (constant) arity and
of any (constant) number of outputs.

2Since the gate may be faulty, its output value need not be uniquely determined by
its inputs. Thus we do need a separate propositional variable for its output value.

54 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

constraints

IC =

𝑔⋀︁
𝑖=1

𝑁𝑖 → (𝐹𝑖 ↔ 𝑂𝑖)

where 𝐹𝑖 is a boolean expression defining the expected output in terms of
the inputs of gate 𝑖. The integrity constraints for a circuit that computes
¬(𝐼1 ∧ 𝐼2), for example, are

IC = (𝑁AND → (𝐼1 ∧ 𝐼2 ↔ 𝑂AND)) ∧ (𝑁NOT → (¬𝑂AND ↔ 𝑂NOT))

The initial belief will be the conjunction of the integrity constraints and
of the belief that all gates are not faulty :

IB = IC ∧

(︃
𝑔⋀︁
𝑖=1

𝑁𝑖

)︃

An observation is a description of observed primary input and primary out-
put values

OBS =
𝑛𝐼⋀︁
𝑖=1

[¬]𝐼𝑖 ∧

𝑛𝑃𝑂⋀︁
𝑗=1

([¬]𝑃𝑂𝑗)

where the notation [¬]𝑃 means that proposition 𝑃 is optionally prepended
with a negation symbol.

The goal is to define a change operator that given an initial belief and
an observation of the above forms, returns an epistemic state describing
which gates, if taken as faulty, explain the given observation. Of course, the
returned formula need not indicate only one combination of faulty gates;
there could be several ways in which a faulty circuit can produce a given
output.

We define the change operator using a suitable notion of minimality.
Interpretations are complete descriptions of the state of the circuit. In
other words, an interpretation prescribes the inputs, outputs, intermediate
results and normality predicates for the circuit. Intuitively, we want to
select all those interpretations that are models of the observed behaviour,
while making the smallest change to the persistent information about the
circuit, i.e., the normality predicates. Thus, a suitable notion of minimality
is the set-inclusion of differences, but restricted on normality predicates. We
do not use a variant of Dalal’s operator because that would imply that we
are only interested in the minimum number of faults necessary to explain
the observation.

We choose a variant of Borgida’s operator to model this notion of close-
ness. If 𝑀,𝑁,𝐿 are interpretations, the ordering is defined as:

𝑀 ≤𝐿 𝑁 iff

(︃
𝑛𝐼⋀︁
𝑖=1

𝐼𝑖(𝑀)↔ 𝐼𝑖(𝑁)

)︃
∧

⎛
⎝𝑛𝑃𝑂⋀︁
𝑗=1

𝑃𝑂𝑗(𝑀)↔ 𝑃𝑂𝑗(𝑁)

⎞
⎠ ∧

3.3. FAULT DIAGNOSIS 55

(︃
𝑔⋀︁
𝑘=1

𝑁𝑘(𝐿)⊕𝑁𝑘(𝑀)→ 𝑁𝑘(𝐿)⊕𝑁𝑘(𝑁)

)︃

where 𝑁𝑖(𝑀) denotes the value of 𝑁𝑖 at the interpretation 𝑀 , and simi-
larly for other propositional variables. Thus, for two interpretations to be
comparable, they should imply the same input-output behaviour, hence the
first two conjuncts of the above formula. Note that intermediate results
do not appear in the definition of the ordering, as they are not observable.
The third conjunct formalises our notion of closeness of sets of faulty gates;
we are interested in the minimal set of gates (with respect to set-inclusion)
that, when faulty, concords with the observation.

With this change operator, protection of integrity constraints is achieved
by revising our initial belief not just with the observation, but with the
conjunction IC ∧OBS.

The result of the revision will include information about the particular
observation we revised with, in view of the axiom R2. In particular, the val-
ues of primary inputs and outputs in the observation will be included in the
resulting epistemic state. Since in fault diagnosis we are only interested in
information about the normality predicates of the circuit, we need to elim-
inate from the resulting belief all knowledge about propositional variables
other than normality predicates. We use (boolean) existential quantification
to eliminate all propositional variables that carry irrelevant information from
the result of the revision. This operation, which in the context of theory
change is called elimination, is examined in [KM89].

3.3.2 BDD formulation

From the definition of the operation, the models of the revision are

mod(IB ∘ (IC ∧OBS)) = {𝑀 | 𝑀 ∈ mod(IC ∧OBS)∧

∃𝑁. (𝑁 ∈ mod(IB) ∧ ∀𝐿. (𝐿 ∈ mod(IC ∧OBS)→ 𝐿 ̸<𝑁 𝑀))}

and the models of the diagnosis are obtained by quantifying away all vari-
ables except normality predicates.

We will assume that the ordering given previously is represented by a
BDD 𝐵≤, from which the BDD for the negation of the strict ordering, �̸�<,
can be obtained through the use of negate and strict (𝐵≤ can be easily
constructed as in section 3.2.3). Then, the BDD algorithm for the operation
is:

∃𝑝⟨𝐼1,...,𝐼𝑛𝐼 ,𝑂1,...,𝑂𝑔⟩.
(︀(︀
𝐵IC ∧𝐵OBS

)︀
∧

∃𝑝′.
(︀
𝐵IB[𝑝

′/𝑝]∧ ∀𝑝′′.
(︀(︀
𝐵IC ∧𝐵OBS

)︀
[𝑝′′/𝑝] → �̸�<

)︀)︀)︀
Let us now look at the sizes of the BDDs involved as well as at some

upper bounds for the complexity of the algorithm.

56 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

∙ Circuits, similar to the one presented in section 3.2.3, that compute
the ordering and the negation of its strict counterpart are easily con-
structible. Thus by theorem 2.2.1, the BDD �̸�< representing ̸< (where
≤ is defined by the formula above) is of size 𝑂(𝑛𝐼 + 2𝑔) = 𝑂(𝑔).

∙ The BDD 𝐵IC is, of course, dependent on the specific circuit in ques-
tion. Therefore we cannot give a bound on its size. However, by using
the BDD-variable ordering 𝐼1, . . . , 𝐼𝑛𝐼 , 𝑁1, 𝑂1, . . . , 𝑁𝑔, 𝑂𝑔 we ensure an
empirically compact representation of 𝐵IC.

∙ The BDD for the conjunction of all normality predicates 𝑁𝑖 can be
easily shown to have a size of 𝑂(𝑔) irrespective of the variable or-
dering used. Thus the BDD for the initial belief 𝐵IB will be of size
𝑂
(︀⃒⃒
𝐵IC

⃒⃒
· 𝑔
)︀
, by the apply algorithm. Similarly, the BDD 𝐵OBS for

the observation will have a size of 𝑂(𝑔) and the conjunction with the
integrity constraints 𝐵IC ∧𝐵OBS will be of size 𝑂

(︀⃒⃒
𝐵IC

⃒⃒
· 𝑔
)︀
.

Therefore, an upper bound for the worst-case time complexity of the above
algorithm is 𝑂

(︀⃒⃒
𝐵IC

⃒⃒
· 𝑔 · 216𝑔

)︀
.

3.3.3 Implementation and experimental results

As mentioned earlier, theory change operations are known to be very ex-
pensive in the worst case. Since the complexities reported up to this point
concern only the worst-case, and taking into account the fact that the
known bounds on BDD operations such as quantification are not tight,
we proceeded with a medium-scale implementation of the algorithm pre-
sented in the previous section. This implementation can be obtained from
http://www.cs.bham.ac.uk/~nkg/ in source code form. Results regarding
the complexity of that algorithm were gathered by trying diagnosis of ran-
dom observations on a specific combinational circuit, the 𝑛-bit adder. Those
results along with details about the implementation are presented below.

Implementation

The implementation uses the BuDDy package for the manipulation and
construction of BDDs [LN]. As most BDD packages, BuDDy is a C/C++
library that offers services for the creation of BDD variables, the application
of operations on BDDs such as those described in section 2.2.3 and statistics
reporting on memory usage. BuDDy also offers a C++-only interface that
allows for the automation of many tedious book-keeping operations such
as BDD-node reference counting, as well as for treating BDDs as first-class
objects, rather than just integer indexes that point to a hidden structure
inside the BDD library, as is the case with most C interfaces. For these
reasons, the C++ interface of BuDDy was used.

http://www.cs.bham.ac.uk/~nkg/

3.3. FAULT DIAGNOSIS 57

The rest of the implementation was coded in C++ and consists of a
number of classes designed to embody the functionality for (a) modelling
an arbitrary combinatorial circuit and (b) diagnosing that model against an
input-output observation that deviates from the circuit’s specification. The
major modules of the implementation will be described below.

The class TBddMgr: This is a singleton class that deals with the initialisa-
tion and finalisation of the BDD package, and exports methods for the
creation and replacement of named BDD variables (since BuDDy only
provides indexed access to BDD variables). It also provides methods
for extracting data on the memory usage of BuDDy. Finally, included
are methods for the formatting of BDDs in DOT syntax, for visuali-
sation purposes. 3

Circuit modelling: A class named Circuit is used as a base-class for the
circuits that will be used for diagnosis; it deals with the basic admin-
istration of the integrity constraints of the circuit. The construction
phase of an instance of this class uses a number of objects that repre-
sent the available types of logical gates: AndGate, OrGate, XorGate and
NotGate (new types of gates can be easily added by sub-classing the
parent class Gate). These classes serve as placeholders of the normality
predicates and output variables; these are declared automatically as
BDD variables during object creation. Adding a Gate-type object to
a Circuit automatically registers the additional integrity constraints
and updates the boolean function of the circuit.

Diagnosing circuits: The Circuit class also provides the required meth-
ods for the diagnosis process. The buildOrdering deals with the con-
struction of the BDD that represents the ordering of interpretations
described in the previous section. The diagnose method accepts an
observation in BDD form and performs the diagnosis. It returns a
BDD consisting only of normality predicate variables. This BDD may
admit several truth assignments for its variables and each one corre-
sponds to a combination of gates that, when faulty, may generate the
observation given as an argument to the method.

This set of classes can be used for diagnosis of any combinational boolean
circuit. The experiments performed with it are presented in the next part.

Experiments and results

There are (at least) two major factors in this realisation of fault diagnosis:

3DOT is a graph description language that the GraphViz tools can automatically con-
vert in a number of picture formats (http://www.graphviz.org/).

http://www.graphviz.org/

58 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

∙ We have used belief change to formulate the process of diagnosis.
There are other formulations, e.g. ones that are more adapted to par-
ticular domains of systems.

∙ We have used BDD algorithms in order to implement the relevant
belief change operation within the presented formulation. Similarly,
belief change may be implemented in other ways, without using BDDs
to represent formulae.

Understanding the precise effect of the combination of these factors is a
major undertaking which falls outside the scope of this research. Instead, we
have performed experiments that aim to demonstrate that a typical case of
diagnosis, the fault diagnosis of an 𝑛-bit adder, can be performed efficiently
with this implementation.

The circuit we have chosen for our tests, the 𝑛-bit adder, is a circuit
that leads to low complexities of the BDDs involved in diagnosis. However,
had we selected a circuit that knowingly led to exponential complexities,
then the average case for diagnosis (and indeed, worst, best and any case)
would be provably exponential. Due to time limitations, other circuits with
sub-exponential BDD size were selected for further investigation, but not
tested (see section 6.1).

The 𝑛-bit adder is a combinational circuit that has 2𝑛 boolean inputs
and 𝑛 boolean outputs.4 The inputs represent two 𝑛-bit integers that are
added and output by the adder. The basic building unit in the structure of
an 𝑛-bit adder is a full adder, already described in section 3.2.5. The purpose
of this unit is to add two binary digits along with a carry digit coming from
lower-order additions, and produce the resulting sum and carry bits. There
are many ways to implement such a circuit; the one used in this section is
a standard design shown in figure 3.3.

In order to implement the 𝑛-bit adder, a FullAdder class was imple-
mented, that automatically builds the full adder shown in figure 3.3, using
the classes presented earlier. On top of that, a NBitAdder class was built,
derived from the Circuit class and thus inheriting the methods suitable for
the diagnosis of the 𝑛-bit adder. The design for the 𝑛-bit adder is shown in
the right half of figure 3.3.

The BDD for the integrity constraints 𝐵IC for the 𝑛-bit adder, was
found to have linear complexity in 𝑛. Therefore, and since each full adder
consist of 5 gates, an upper bound for the worst-case complexity of the
fault-diagnosis algorithm on the 𝑛-bit adder is 𝑂(𝑛2 · 290𝑛), in view of the
result in the previous section.

The computer used for the experiments was an UltraSparc-II at 450 MHz
with 4Gb of memory, running SunOS 5.8. The large amount of physical

4Strictly speaking, an 𝑛-bit adder has 𝑛+1 outputs because of the carry bit indicating
overflow, but for the sake of simplicity we will ignore the carry bit.

3.3. FAULT DIAGNOSIS 59

Carry In

In1

In2

Carry Out

Sum

In1(0)

In2(0)

In1(1)

In2(1)

In1(n)

In2(n)
Full Adder

Full Adder

Full Adder

0

Sum(n)

Sum(1)

Sum(0)

Figure 3.3: A standard design for a full adder (left) and an 𝑛-bit adder
(right).

memory on the computer ensured that timings of BDD operations would
not be deemed inaccurate by virtual memory swapping. The code as well as
the BuDDy library were compiled and optimised with the GCC tool-chain5

for SPARC processors.
The BuDDy package, as most of the BDD packages available, offers

heuristics for automatically re-ordering the variables of BDDs in order to
attain lower space complexities. This capability is very important in an
application for fault diagnosis on arbitrary circuits, since the BDD for the
integrity constraints is of an unpredictable size and can benefit from auto-
matic re-ordering. However, having chosen a specific circuit to perform our
experiments on, we did not make use of this feature.

We attempted two kinds of tests. In the first one, 𝑛-bit adders of suc-
cessively larger 𝑛 were generated, and each one was diagnosed with a set of
uniformly distributed random observations. The number of possible obser-
vations for 𝑛 bits is 23𝑛. A constant percentage of those 23𝑛 observations
were sampled and fed to the diagnosis algorithm. The space complexity
of each diagnosis was recorded and an average complexity for each 𝑛 was
produced.

The reason for sampling the space of all possible observations as inputs
to the fault diagnosis algorithm is that, in general, faults affecting even only
one gate may affect any number of output bits. Secondly, in the case of
the 𝑛-bit adder this is not only a possibility but a certainty; if, e.g., one
of the xor gates of the very first full adder malfunctions then any output
configuration is possible. Also, for generality’s sake, no restrictions on the
number of faults occurring in the circuit were posed, something reflected in

5http://www.gnu.org/gcc/.

http://www.gnu.org/gcc/

60 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

our choice of ordering as well; had we used such restrictions, a variant of
Dalal’s ordering might have been more appropriate.

Unfortunately, sampling a fixed percentage of an exponentially sized
population leads to exponential time taken for the tests. Indeed, at 7 bits,
diagnosing 10% of the total number of observations possible amounts to
running the diagnosis algorithm 209716 times, and for 8 bits this number
is multiplied by 8. Due to the excessive time taken for the fixed-percentage
tests, we could only run them for up to 7 bits. The results for this test are
shown below (space complexity is measured in BDD nodes produced):

Bits Average Space Number of
Complexity Samples

1 234 1
2 886 7
3 1906 52
4 3229 410
5 4861 3277
6 6804 26215
7 9052 209716

In order to get an idea of the complexities concerned in larger circuits, we
tried a second test by running our algorithm on 1000 samples for each bit-
size. Admittedly, this approach reduces exponentially the accuracy of our
averages in the number of bits. However, by running this test multiple times
we have empirically verified that the variance of the results is not significant
(in particular, the ratio of standard deviation to average never exceeded 5%
in the case of space complexity and 10% in the case of time complexity).
The average space complexity (in BDD nodes produced) and the average
time complexity (in ms) are shown in figures 3.4 and 3.5 respectively.

We can easily observe that the two curves are very similar. This probably
means that most of the time consumed by the algorithm is spent in memory
allocation (and possibly deallocation, but in a more or less constant ratio to
the allocations). This effect is not unknown for BDD algorithms, whereby
many primitive operations perform one allocation per time-step. While the
memory-consumption curve is smooth, the time-consumption curve is not.
This is most probably due to time sampling issues as it features prominently
wherever the times measured are less than 25ms, a value very close to the
order of magnitude of the time-slice of the computer system that was used
for the experiments.

As with any empirical investigation, these results cannot be taken as
conclusive evidence of tractability or intractability. However, we did use a
nonlinear least squares method (Marquardt-Levenberg algorithm) to fit a
number of classes of functions to the above curves. To our best knowledge,
the best fit was a quadratic function, being significantly better that expo-
nential and sub-exponential non-polynomial ones. In addition, in the case

3.3. FAULT DIAGNOSIS 61

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

Average Number of BDD Nodes Produced

Figure 3.4: Average number of BDD nodes produced per diagnosis in the
number of bits.

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60

Average Time (in ms)

Figure 3.5: Average time (in ms) spent per diagnosis in the number of bits.

62 CHAPTER 3. BDDS AND THEORY CHANGE OPERATORS

of space complexity, the resulting quadratic function from fitting the first
or last 15 data points predicts reasonably well the remaining 45. Therefore,
it seems plausible that the average complexity of diagnosing a randomly
chosen, uniformly distributed, input-output observation on an 𝑛-bit adder
is of quadratic order of magnitude.

3.4 Related work

Madre and Coudert, in [MC91], use a variation of BDDs called Typed De-
cision Diagrams (TDGs) to implement what they call a logically complete
reasoning maintenance system. TDGs are identical to BDDs apart from the
fact that they may incorporate negated edges in their graphs. A negated
edge indicates that the pointed subgraph is to have its truth value con-
sidered inverted. Their results indicate that Madre and Coudert’s TDG
algorithms may be used for the following problem. Let KB be a formula
and 𝐸 a conjunction of literals that is inconsistent with KB . The problem
is then to compute the set of maximal subsets of the literals of 𝐸 that are
consistent with KB . This could be seen as a variant of belief revision in
that the ‘initial belief’, 𝐸, is relaxed in order to achieve consistency with
the ‘new information’ 𝐾𝐵. The crucial difference is that 𝐾𝐵 is not entailed
by the result. Madre and Coudert provide experimental evidence that the
TDG algorithms they present, performed empirically well.

Würbel, Jeansoulin and Papini in [WJP01] present results on spatial in-
formation revision. Their application is related to geographical information
systems and the fact that imprecise data measurements make revisions nec-
essary. They encode their data in such a way so that all considered formulae
or knowledge bases are always in the form of conjunctions of literals. Three
methods of implementing a particular revision operator are considered, one
of which uses BDDs. The BDD method makes use of the special form the
formulae are in and is essentially a graph search and ‘surgery’ on the BDD
itself. As such, the approach described in [WJP01] is specific to the appli-
cation considered and therefore not immediately, if at all, generalisable to
the other operators found in the literature.

Chapter 4

Minimal refinement and

Modal Logic

4.1 Introduction

Imagine that for the purposes of model checking a microprocessor, a transi-
tion model has been constructed that models, for example, the interface be-
tween the microprocessor (CPU) and the memory management unit (MMU).
One way to distinguish between the state transitions of the different sub-
systems is to have many transition relations in the model, one for each sub-
system. Suppose further that an error has been discovered in the model,
such that a particular CPU transition is followed by an insufficient num-
ber of ‘wait-states’ before the MMU has reached an appropriate state of
its own. Also, the model is considered to be sufficient in other cases. It
would be desirable to refine this model into another which does not con-
tain this problematic scenario, possibly by unfolding existing state-loops,
while avoiding the addition of ‘new’ transition sequences. The framework
presented in section 1.3 could, then, be used for the automatic generation
of such a refinement.

In another scenario, suppose that in order to study mathematically (and
possibly model check!) a board game of two players, we wish to construct a
transition system that models all or some of the possible evolutions of the
game. This transition system would have two transition relations, a black
and a white one, each one corresponding to a player. Suppose that we are
interested in studying the effect of adding a new rule to the game, of the
form “if the white player has captured the centre of the board, then the black
player must retreat by one square”. Since new game-state sequences should
not be added by the incorporation of this rule, what we are really looking
for is a refinement of the initial model. Moreover, this refinement should be
minimal, as the addition of this rule should only exclude evolutions of the
game that are expressly forbidden.

63

64 CHAPTER 4. MINIMAL REFINEMENT AND MODAL LOGIC

In both of these cases, modal logic can be used to phrase the require-
ments presented. For example, in the second one, a formula of the form
CentreCapturedBy(white)→ 2blackRetreats(black) is sufficient. More gener-
ally, modal logic can be used as a simple specification language for processes.
It provides the mechanisms to describe what the state of a process is, what
actions are possible and what actions are necessary from that state. Indeed,
modal logic can be seen as Hennessy-Milner logic [HM85] extended with
propositional operators and state-information.

In the universe of transition systems and modal logic, a behaviour of
a model is a computation tree. If refinement is seen as containment of
behaviours, then the appropriate concept in this case is simulation [Mil71,
BFG+91]. This is the notion of refinement with which we will instantiate
the ordering ≤𝑀 and minimal refinement in this chapter.

Our main interest is in the applications of minimal refinement; therefore,
and especially in the context of model checking, the class of finite models
is central to this work due to the fact that finite-state processes can be
described in a straightforward way as finite models. However, a detour will
be taken through another class of models, before the discussion of the finite
case. This class, the modally-saturated models (referred to as m-saturated
from now on) is not a class that directly lends itself to practical uses of
modal logic, since it includes infinite and uncountable models, and only
imposes modest restrictions on its members. On the other hand, since it
combines productively with the notion of the ultrafilter construction (more
on which will follow), it will provide us with a set of results that will serve
as tools for approaching the finite case. Moreover, it possesses the following
properties [Hol95]:

∙ It subsumes the class of image-finite models (and hence the finite ones).

∙ It has the Hennessy-Milner property. (A class of models has the
Hennessy-Milner property whenever for every pair of its models, they
are bisimilar if and only if they are logically equivalent.)

∙ It is maximal in the sense that no proper superclass of it has the
Hennessy-Milner property.

∙ It has also been used to provide semantics for simple process algebras.

The outline of this chapter is as follows. Firstly, the definition of minimal
refinement is examined in the modal case, and examples motivate the related
questions, in section 4.2. Then, minimal refinement is examined in the case
of m-saturated models in section 4.3, where the questions of non-triviality
and stopperedness are addressed. The case of minimal refinement of finite
models is investigated in section 4.4, where the results on stopperedness,
non-triviality and decidability of several problems are discussed. Finally,
related work is discussed in section 4.5.

4.2. MINIMAL REFINEMENT IN THE MODAL CASE 65

4.2 Minimal refinement in the modal case

Definition 1.3.1 is reproduced here. Let 𝑀 , 𝐴 and 𝐵 be models. Then,
𝐴 ≤𝑀 𝐵 if

1. 𝑀 ← 𝐴← 𝐵 or

2. 𝑀 ← 𝐴 but 𝑀 8 𝐵 or

3. 𝐴� 𝐵.

where ← means simulation.
Notice that the definition of minimal refinement,

𝑀 * 𝜑 = min
≤𝑀

(mod(𝜑))

is essentially parameterised over two dimensions here. Firstly, there are
two meanings for the mod operator, the local and the global, as defined
in section 2.3. Secondly, since we are going to be concerned with several
classes of models, the mod operation will range over the appropriate class.
We will add some notation to make these issues clear. The * symbol and the
mod operator will be subscripted with the class of models in question. In
addition, the exponent 𝐺 when it exists will indicate that only the models
that satisfy globally the given property are to be considered. Lastly, the
notation [𝐺] will indicate that the result under discussion will concern both
the local and the global case. So, for example, mod𝐺ℳ(𝜑) signifies the sub-
class of models in the classℳ that satisfy 𝜑 on all of their states.

Therefore, for some class of modelsℳ we have:

𝑀 *ℳ 𝑇 = min
≤𝑀

(modℳ(𝑇))

and its global version

𝑀 *𝐺ℳ 𝑇 = min
≤𝑀

(︀
mod𝐺ℳ(𝑇)

)︀
Accordingly, stopperedness has to be parameterised over local/global

satisfaction. Definition 1.3.3 says that an ordering ≤ over ℳ is stoppered
over a collection of sets of models 𝒞 ⊆ 2ℳ iff, for each 𝑋 ∈ 𝒞 and any model
𝐴 ∈ 𝑋, there exists a model 𝐵 ∈ 𝑋 such that 𝐵 ≤ 𝐴 and 𝐵 is ≤-minimal in
𝑋. The collection of sets 𝒞 will eventually be defined as the collection of sets
of models of some sentence or some set of sentences. As such, these collec-
tions will again be ultimately parameterised over global/local satisfaction.
Further details will follow in the specific cases.

The questions described in section 1.3 will now be reviewed in the modal
case. Firstly, observe the model 𝐸 in figure 4.1. It essentially represents a
system that starts from a 𝑝 state (the diamond shape indicates the starting

66 CHAPTER 4. MINIMAL REFINEMENT AND MODAL LOGIC

state) and which will execute at least one transition, the result of which is
a ¬𝑝 state, before returning to the 𝑝 state.

The importance of the question of non-triviality is easily demonstrated:
suppose we wanted to compute 𝐸 *𝒦 3𝑝 (note that this is the local version
referring to the satisfaction of formulae at the initial state, over all Kripke
models). It should be clear that a model that refines 𝐸 and satisfies 3𝑝
does not exist, and as such, 𝐸 *𝒦 3𝑝 = mod𝒦(3𝑝). The conditions under
which this does not happen, are, then, of interest to us.

p ¬p

Figure 4.1: 𝐸, an example Kripke model.

Suppose, instead, that we would like to compute 𝐸 *FIN 22¬𝑝, where
FIN denotes the class of finite Kripke models. In this case, it is easy to show
that finite models that refine 𝐸 and satisfy 22¬𝑝 indeed exist, as it can
be seen in figure 4.2. All the models shown in figure 4.2 except for 𝐸, the
leftmost, satisfy 22¬𝑝 on their initial states. Moreover, they form a chain,
i.e. a set of models ordered totally by simulation (the dashed lines indicate
the simulation relations). It is obvious that there exists an infinite number
of finite models that are in between the leftmost model and the second one
in terms of simulations, that satisfy 22¬𝑝 and are progressively smaller
with respect to the ordering ≤𝐸 .

p

¬p

... p

¬p

¬p

¬p

¬p

p

¬p

¬p

¬p

p

¬p

¬p

Figure 4.2: A chain of models that refine 𝐸 and satisfy 22¬𝑝.

4.2. MINIMAL REFINEMENT IN THE MODAL CASE 67

Therefore, the question of stopperedness is important as a guarantee for
the existence of minimal models. In this case it would guarantee that there
exists a finite model 𝑀 such that 𝐸 ← 𝑀 (𝑀 refines 𝐸), 𝑀 |= 22¬𝑝 (𝑀
satisfies the given property), and for any model 𝑁 such that 𝐸 ← 𝑁 ← 𝑀
and 𝑁 |= 22¬𝑝, then 𝑀 ← 𝑁 .

In fact, in this example, it is easy to find such a model and, moreover,
one that is indeed the minimum of modFIN(22¬𝑝) with respect to ≤𝐸 .
This minimum model can be seen in figure 4.3.

p ¬p ¬p p

Figure 4.3: 𝑀 , the minimum of modFIN(22¬𝑝) with respect to ≤𝐸 .

We will give an informal proof of the minimality of 𝑀 . Observe figure
4.4. The fact we are trying to prove is, essentially, that if there exists a model
𝑁 with all the requirements, and is lower or equal to𝑀 then it is equal. More
formally, if 𝑁 |= 22¬𝑝 and 𝐸 ← 𝑁 ←𝑀 then 𝑁 →𝑀 . A candidate model
for 𝑁 is shown in the middle of figure 4.4 (for the purposes of readability
some of the arrows of the simulation relations have been omitted).

E N M

p

¬p

p

¬p ¬p

0: p

¬p ¬p ¬p ¬p

1: ¬p

... ¬p p

2: ¬p

... ...

3: p

Figure 4.4: 𝐸, 𝑀 and a candidate model 𝑁 for modFIN(22¬𝑝), 𝐸 ← 𝑁 ←
𝑀 and 𝑁 9𝑀 .

68 CHAPTER 4. MINIMAL REFINEMENT AND MODAL LOGIC

First, observe that 𝑁 must have a 𝑝-starting state, due to the fact that
𝑁 ←𝑀 . From the same fact it follows that the starting state of𝑁 must have
at least one ¬𝑝-successor. Similarly, from 𝐸 ← 𝑁 it follows that 𝑟𝑁 cannot
have a 𝑝-successor. Also, because of the requirement 𝑁 |= 22¬𝑝, there
cannot be any states in 𝑁 with distance 2 from 𝑟𝑁 that have 𝑝. Therefore, 𝑁
must look like what is shown in figure 4.4 (modulo simulation equivalence).

Proving that 𝑀 is the minimum model requires, essentially, the con-
struction of a simulation from 𝑁 to 𝑀 . We will briefly define one such
relation and argue that it is a simulation. 𝑟𝑁 will of course be mapped
to 𝑟𝑀 . The level-1 and level-2 successors of 𝑁 will be mapped to states 1
and 2 of 𝑀 , respectively. For the remaining states, the mapping is defined
according to the valuation: a ¬𝑝-state of 𝑁 will be mapped to state 2 and a
𝑝-state of 𝑁 to state 3. The mapping of the ¬𝑝 states is trivially adequate,
since state 2 has both ¬𝑝- and 𝑝-successors. The mapping of the 𝑝-state
is slightly trickier in that state 3 has only a ¬𝑝-successor. However, from
the requirement that 𝐸 ← 𝑁 follows that a 𝑝-state can only transition to a
¬𝑝-state. Therefore, the defined relation is a simulation and as such 𝑀 is
the minimum.

This example is obviously a very simple one. We would like to be able to
guarantee the existence of minimal models and be able to compute them,
without recourse to a proof for each individual case. Therefore, it would be
interesting to investigate the decidability of the problem of finding minimal
models, as well as of reasoning about them.

4.3 M-Saturated models

Minimal refinement from the perspective of m-saturated models, *MSAT, will
be discussed in this section. Essentially, an m-saturated model is a Kripke
model that satisfies a condition similar to compactness across the successors
of its states. The formal definition follows.

Definition 4.3.1 (M-saturation)
Let 𝑀 be a model, 𝑠 a state in 𝑊𝑀 and 𝑇 a set of sentences.

1. 𝑇 will be called satisfiable on the successors of 𝑠 iff for each relation
𝑅𝑖𝑀 there exists a state 𝑡 ∈𝑊𝑀 such that (𝑠, 𝑡) ∈ 𝑅𝑖𝑀 and 𝑇 ⊆ th(𝑡).

2. Similarly, 𝑇 will be called finitely-satisfiable on the successors of 𝑠
iff for each relation 𝑅𝑖𝑀 and for any finite set of sentences 𝐹 ⊆ 𝑇 there
exists an 𝑅𝑖𝑀 -successor 𝑡 of 𝑠 such that 𝐹 ⊆ th(𝑡).

3. A state 𝑠 is called m-saturated iff, for any set of sentences 𝑇 , if 𝑇 is
finitely-satisfiable on the successors of 𝑠, then it is satisfiable on the
successors of 𝑠.

4. A model is m-saturated if all its states are m-saturated. 2

4.3. M-SATURATED MODELS 69

MSAT will denote the class of m-saturated models. Notice that MSAT is
closed under bisimulation.

In the following we will use the ultrafilter extension of a model. The
internals of the construction are not relevant here, apart from two of its
properties:

∙ the ultrafilter extension of a model 𝑀 is another model ue(𝑀) that is
logically equivalent to 𝑀 and,

∙ ue(𝑀) is m-saturated.

Accounts of the construction appear in many places, e.g. [BdRV01].
The first two lemmas characterise simulation in syntactic terms, and

establish an exact match in the m-saturated case.

Lemma 4.3.2 (Simulation implies PU language inclusion)
If 𝑀,𝑁 are models such that 𝑀 ← 𝑁 , then PU(𝑀) ⊆ PU(𝑁) (Folk-

lore). 2

Lemma 4.3.3 (The effect of PU language inclusion)
Let 𝑀,𝑁 be models. If PU(𝑀) ⊆ PU(𝑁) and 𝑀 is m-saturated, then

there exists a simulation from 𝑁 to 𝑀 , 𝑀 ← 𝑁 (Folklore). 2

Proof For convenience we will work with PE formulae, the dual of positive
universal ones. Note that PU(𝑠) ⊆ PU(𝑡) iff PE(𝑠) ⊇ PE(𝑡). Define a
relation 𝑆 such that

(𝑠, 𝑡) ∈ 𝑆 iff 𝑠 ∈𝑊𝑁 , 𝑡 ∈𝑊𝑀 and PE(𝑠) ⊆ PE(𝑡)

We prove that 𝑆 is a simulation.

∙ Since 𝒜 ∪ 𝒜 ⊆ ℒPE, 𝑆 respects the valuations, i.e. if (𝑠, 𝑡) ∈ 𝑆 then
𝑣𝑁 (𝑠) = 𝑣𝑀 (𝑡).

∙ Assume that state 𝑠 has a successor 𝑠′ with respect to a relation 𝑅𝑖𝑁 .
Let 𝑃 be the set of PE sentences of 𝑠′. For any finite subset 𝐹 ⊆ 𝑃 ,
𝑠′ |=

⋀︀
𝐹 and thus 𝑠 |= 3𝑖

⋀︀
𝐹 . 3𝑖

⋀︀
𝐹 is a PE formula, so by

definition it is satisfied at 𝑡. Thus there is an 𝑅𝑖𝑀 -successor of 𝑡 that
satisfies

⋀︀
𝐹 . In other words, 𝑃 is finitely-satisfiable on the successors

of 𝑡. 𝑀 however is m-saturated, thus there is an 𝑅𝑖𝑀 -successor 𝑡′ of 𝑡
that satisfies 𝑃 and as such PE(𝑠′) ⊆ PE(𝑡′).

So, 𝑆 is a simulation whenever it is non-empty and it relates the initial
states. Those conditions are satisfied by the assumption PU(𝑀) ⊆ PU(𝑁)
or equivalently PE(𝑁) ⊆ PE(𝑀). �

70 CHAPTER 4. MINIMAL REFINEMENT AND MODAL LOGIC

A set of sentences 𝑇 is called complete if for every sentence 𝜑 ∈ ℒK,
either 𝑇 ⊢ 𝜑 or 𝑇 ⊢ ¬𝜑. It is easy to see that if 𝑇 is complete and consistent
then there exists a model𝑀 such that th(𝑀) = 𝑇 . But what happens when
we restrict to the language of positive universal formulae? The following
definition and lemma establish such a criterion.

Definition 4.3.4 (Taking disjuncts and ℒPU-consequence)
Let 𝑇 be a set of sentences.

∙ 𝑇 is closed under taking disjuncts iff whenever 𝜑∨𝜓 ∈ 𝑇 then 𝜑 ∈ 𝑇
or 𝜓 ∈ 𝑇 .

∙ 𝑇 is closed under ℒPU-consequence iff whenever 𝑇 ⊢ 𝜑 and 𝜑 ∈ ℒPU
then 𝜑 ∈ 𝑇 . 2

Lemma 4.3.5 (Exact satisfaction of a set of PU sentences)
Let 𝑃 ⊆ ℒPU. There exists a model 𝑀 such that 𝑃 = PU(𝑀) if and only
if 𝑃 is consistent, closed under ℒPU-consequence and taking disjuncts.2

Proof The left-to-right direction is trivial. Right-to-left: for a model 𝑀
to have exactly 𝑃 as its set of PU formulae, it must satisfy 𝑃 and falsify its
complement with respect to ℒPU. In other words, there exists such a model
iff 𝑃, 𝑃 𝑐 ̸⊢ ⊥. Assume the contrary. Then there exist formulae 𝜑, 𝜓1, . . . , 𝜓𝑛
such that 𝜑 ∈ 𝑃 (note that 𝑃 is closed under conjunction), ¬𝜓𝑖 ∈ 𝑃 𝑐 and
𝜑,¬𝜓1, . . . ,¬𝜓𝑛 ⊢ ⊥. But then, 𝜑 ⊢ 𝜓1∨ . . .∨𝜓𝑛 and since 𝑃 is closed under
ℒPU-consequence, 𝜓1∨ . . .∨𝜓𝑛 ∈ 𝑃 . 𝑃 is also closed under taking disjuncts
so there exists 1 ≤ 𝑗 ≤ 𝑛 such that 𝜓𝑗 ∈ 𝑃 which is a contradiction because
𝜓𝑗 ∈ 𝑃

𝑐. �

We may now turn to the first question about minimal refinement in
MSAT, non-triviality.

Lemma 4.3.6 (Non-triviality for MSAT)
Let 𝑀 be an m-saturated model and 𝑇 a set of sentences. Then,

∙ there exists an m-saturated model 𝑁 such that 𝑀 ← 𝑁 and 𝑁 |= 𝑇
iff PU(𝑀) ∪ 𝑇 ̸⊢ ⊥.

∙ there exists an m-saturated model 𝑁 such that 𝑀 ← 𝑁 and 𝑁 |=𝐺
𝑇 iff PU(𝑀) ∪2*𝑇 ̸⊢ ⊥. 2

Proof We consider the local case first. Left-to-right: Since 𝑀 ← 𝑁 it
follows from lemma 4.3.2 that PU(𝑀) ⊆ PU(𝑁). Thus 𝑁 is a model of
both 𝑇 and PU(𝑀).

Right-to-left: Let 𝑁 be a model of PU(𝑀)∪𝑇 . Then, PU(𝑀) ⊆ PU(𝑁).
Since 𝑁 may not be m-saturated, we take the ultrafilter-extension of 𝑁 ,

4.3. M-SATURATED MODELS 71

ue(𝑁) which is logically equivalent to 𝑁 (and as such a model of PU(𝑀) ∪
𝑇) and m-saturated. It follows that 𝑇 ⊆ th(ue(𝑁)) and that PU(𝑀) ⊆
PU(ue(𝑁)). As 𝑀 is m-saturated it follows from lemma 4.3.3 that 𝑀 ←
ue(𝑁).

It is easy to see that the condition of non-triviality for the global case fol-
lows easily from the local one in view of the observation thatmod𝐺MSAT(𝑇) =
modMSAT(2

*𝑇). �

The following lemma and theorem concern stopperedness of the ordering
for m-saturated models. Lemma 4.3.7 enables us to apply Zorn’s lemma by
proving that, for any chain1, a suitable lower bound can be found, and
indeed, the infimum.

Lemma 4.3.7 (Infima of restricted chains of m-saturated models)
Let 𝑀 be an m-saturated model and 𝑇 a consistent set of sentences

of which 𝑀 is not a model. Let 𝐶 ⊆ modMSAT(𝑇) be a non-empty

chain with respect to ≤𝑀 where all of its members are simulated by 𝑀 .

Then there exists an m-saturated model of 𝑇 which is the infimum of

𝐶 (modulo simulation-equivalence). 2

Proof Define 𝑃 =
⋂︀
𝑁∈𝐶 PU(𝑁). We will prove that there exists a model

𝐿 with PU(𝐿) = 𝑃 which satisfies 𝑇 . Since any model 𝑁 in the chain is
simulated by 𝑀 , PU(𝑀) ⊆ PU(𝑁) and therefore PU(𝑀) ⊆ 𝑃 . Also, for
any two models 𝑁,𝑁 ′ ∈ 𝐶 it will be the case that PU(𝑁) ⊆ PU(𝑁 ′) or
PU(𝑁 ′) ⊆ PU(𝑁). 𝑃 is obviously consistent as a subset of consistent sets.
Also, it is easy to check that 𝑃 is closed under ℒPU-consequence.

We now prove that 𝑃 is closed under taking disjuncts. Assume 𝜑∨𝜓 ∈ 𝑃 .
Then, for all 𝑁 ∈ 𝐶, 𝑁 |= 𝜑 ∨ 𝜓. If all the models in 𝐶 satisfy 𝜑 (or,
respectively, 𝜓) then we are done, so assume that there exists a pair of
models 𝑁,𝑁 ′ ∈ 𝐶 such that 𝑁 |= 𝜑 ∧ ¬𝜓 and 𝑁 ′ |= ¬𝜑 ∧ 𝜓. But this
contradicts the fact mentioned above, that PU(𝑁) ⊆ PU(𝑁 ′) or PU(𝑁 ′) ⊆
PU(𝑁). Hence 𝑃 is closed under taking disjuncts.

From lemma 4.3.5 it follows that 𝑃 ∪ 𝑃 𝑐 is consistent. Assume that
𝑃, 𝑃 𝑐, 𝑇 ⊢ ⊥. Then there exist formulae ¬𝜑1, . . . ,¬𝜑𝑛 ∈ 𝑃 𝑐 such that
𝑃, 𝑇,¬𝜑1, . . . ,¬𝜑𝑛 ⊢ ⊥ or equivalently 𝑃, 𝑇 ⊢ 𝜑1 ∨ . . . ∨ 𝜑𝑛. Thus, for
all 𝑁 ∈ 𝐶, 𝑁 |= 𝜑1 ∨ . . . ∨ 𝜑𝑛, hence 𝜑1 ∨ . . . ∨ 𝜑𝑛 ∈ PU(𝑁) and therefore
𝜑1∨ . . .∨𝜑𝑛 ∈ 𝑃 . As 𝑃 is closed under taking disjuncts there is one disjunct
𝜑𝑗 such that 𝜑𝑗 ∈ 𝑃 , which is a contradiction. Thus there is a model 𝐿 of
𝑃 ∪ 𝑃 𝑐 ∪ 𝑇 . 𝐿 need not be m-saturated, but its ultrafilter extension ue(𝐿)
is, and as it is logically equivalent to 𝐿 it will satisfy 𝑃 ∪ 𝑃 𝑐 ∪ 𝑇 too.

By the definition of 𝑃 we have that for all 𝑁 ∈ 𝐶, PU(ue(𝐿)) ⊆ PU(𝑁).
Thus, by lemma 4.3.3 we obtain ue(𝐿) ← 𝑁 . Also, PU(𝑀) ⊆ PU(ue(𝐿))
which implies that𝑀 ← ue(𝐿). So, ue(𝐿) is a lower bound of 𝐶 with respect

1A chain is a totally-ordered set of models.

72 CHAPTER 4. MINIMAL REFINEMENT AND MODAL LOGIC

to ≤𝑀 . In addition, for any other lower bound 𝐿′ of 𝐶, it follows that
PU(𝐿′) ⊆

⋂︀
𝑁∈𝐶 PU(𝑁) and thus that ue(𝐿) is the infimum of 𝐶 (modulo

similarity). �

In theorems 4.3.10 and 4.4.5 we prove stopperedness for the classes of m-
saturated and finite models, respectively. The application of Zorn’s lemma
is a crucial part of such proofs. The version of this lemma usually found in
textbooks is the following:

Lemma 4.3.8 (Zorn’s Lemma)
If every non-empty chain of a non-empty partially ordered set 𝑋 has a

lower bound in 𝑋, then 𝑋 possesses a minimal element. 2

We will use the following, slightly modified, version of Zorn’s lemma:

Lemma 4.3.9 (A slightly stronger version of Zorn’s lemma)
If every non-empty chain of a non-empty set 𝑋 equipped with a preorder
≤ has a lower bound in 𝑋, then for any element 𝑥 ∈ 𝑋 there exists an

element 𝑦 ∈ 𝑋 such that 𝑦 ≤ 𝑥 and 𝑦 is ≤-minimal in 𝑋. 2

Proof Firstly we define a partial order ⊑ on the basis of ≤ as 𝑥 ⊑ 𝑦 iff
𝑥 < 𝑦 or 𝑥 = 𝑦, where < is the strict counterpart of ≤ and 𝑥, 𝑦 are members
of 𝑋. This definition makes ⊑ a partial order as it is transitive, reflexive
and antisymmetric.

Assume 𝑥 ∈ 𝑋 and define 𝑋 ′ = {𝑥′ ∈ 𝑋 | 𝑥′ ⊑ 𝑥}. Obviously, 𝑋 ′ is
non-empty and it is also partially-ordered, as a restriction of a partial order
remains a partial order.

Every non-empty chain 𝐶 of 𝑋 ′ with respect to ⊑ is also a non-empty
chain of 𝑋. Therefore, by assumption, it has a lower bound 𝑐 within 𝑋. But
since 𝐶 ⊆ 𝑋 ′, it follows that 𝑐 ⊑ 𝑥 and therefore 𝑐 ∈ 𝑋 ′. The conditions
of the original version of Zorn’s lemma are satisfied, thus, 𝑋 ′ has a minimal
element 𝑦, with respect to ⊑. Since by its definition, 𝑋 ′ is downward-closed,
𝑦 is minimal in 𝑋 too.

Now, by 𝑦’s minimality with respect to ⊑ it follows that there is no
𝑧 ∈ 𝑋 ′ such that 𝑧 @ 𝑦. Equivalently, through the definition of ⊑ and some
algebra, 𝑧 < 𝑦∧𝑦 ̸< 𝑧∧𝑦 ̸= 𝑧. This, in turn, by the necessary antisymmetry
and anti-reflexivity of a strict counterpart of an ordering, is equivalent to
𝑧 < 𝑦. Therefore, 𝑦 is minimal with respect to ≤ in 𝑋 ′. This completes the
proof. �

In relation to stopperedness, we will consider two collections of sets of
m-saturated models,

∙ 𝒞𝑇MSAT = {modMSAT(𝑆) | 𝑆 ⊆ ℒK}

∙ 𝒞𝐺𝑇MSAT =
{︀
mod𝐺MSAT(𝑆)

⃒⃒
𝑆 ⊆ ℒK

}︀

4.3. M-SATURATED MODELS 73

corresponding to local and global satisfaction respectively (𝑇 indicates that
we consider sets of sentences instead of formulae).

Theorem 4.3.10 (Stopperedness for MSAT)
Let 𝑀 be an m-saturated model. The ordering ≤𝑀 is stoppered over

both 𝒞𝑇MSAT and 𝒞𝐺𝑇MSAT. 2

Proof Firstly, we consider 𝒞𝑇MSAT. Let 𝑇 be a set of sentences. If 𝑇 ⊆
th(𝑀) then 𝑀 is a minimum with respect to ≤𝑀 in modMSAT(𝑇), as well
as any other m-saturated model 𝑁 of 𝑇 such that𝑀 � 𝑁 . It follows that for
any m-saturated model 𝑁 of 𝑇 there is an m-saturated model of 𝑇 , i.e. 𝑀 ,
which is minimal and 𝑀 ≤𝑀 𝑁 . In the case where 𝑀 /∈ modMSAT(𝑇), it
may or may not be the case that PU(𝑀) ∪ 𝑇 is consistent. If not, then by
applying lemma 4.3.6 it follows that there are no models in modMSAT(𝑇)
that are simulated by𝑀 . Hence, only the third clause of the definition of≤𝑀
can ever apply, rendering all (simulation-distinct) models in modMSAT(𝑇)
incomparable. In this case, for any model 𝑁 ∈ modMSAT(𝑇) there is a model
𝑁 ′ (namely 𝑁 itself) such that 𝑁 ′ ≤𝑀 𝑁 , where 𝑁 ′ is minimal.

Thus, we assume that PU(𝑀) ∪ 𝑇 is consistent. Because of the second
clause of the definition of the ordering, it is easy to see that in this case the
set of minimal elements will be a subset ofmodMSAT(PU(𝑀)∪𝑇). Therefore
we restrict our attention to the models in modMSAT(PU(𝑀)∪ 𝑇) which, by
virtue of lemma 4.3.6, are all simulated by 𝑀 .

Then, for any non-empty chain 𝐶 in modMSAT(PU(𝑀)∪𝑇) lemma 4.3.7
applies, yielding a lower bound of 𝐶 within modMSAT(PU(𝑀)∪ 𝑇). There-
fore by Zorn’s lemma, for any model 𝑁 ∈ modMSAT(𝑇) there exists another
model 𝑁 ′ ∈ modMSAT(𝑇) such that 𝑁 ′ is minimal and 𝑁 ′ ≤𝑀 𝑁 . Thus ≤𝑀
is stoppered over 𝒞𝑇MSAT.

For the case of 𝒞𝐺𝑇MSAT we need only observe that since mod𝐺MSAT(𝑇) =
modMSAT(2

*𝑇), stopperedness over 𝒞𝐺𝑇MSAT is reduced to stopperedness over
𝒞𝑇MSAT. �

To summarise the set of results on m-saturated models,

∙ For any set of modal sentences 𝑇 and an m-saturated model 𝑀 , the
minimal refinement 𝑀 *[𝐺]MSAT 𝑇 is non-trivial (in the sense that the
third clause of definition 1.3.1 for ≤𝑀 is not the only one that applies
within mod

[𝐺]
MSAT(𝑇)), if and only if the set PU(𝑀) ∪ 𝑇 is consistent,

in the local case, or PU(𝑀) ∪2*𝑇 in the global case.

∙ For any m-saturated model 𝑀 and any set of sentences 𝑇 ,

𝑀 *
[𝐺]
MSAT 𝑇 = min

≤𝑀

(︁
mod

[𝐺]
MSAT(𝑇)

)︁
̸= ∅

74 CHAPTER 4. MINIMAL REFINEMENT AND MODAL LOGIC

This set of results will form the basis of the corresponding ones in the finite
case. This will, in general, be achieved by exploiting the fact that finite
models are m-saturated, and then by constructing finite models that lie
‘below’ (in terms of ≤𝑀) the m-saturated ones provided by lemma 4.3.6
and theorem 4.3.10.

4.4 Finite models

We will now turn to the treatment of minimal refinement in the finite case.
As already mentioned, the class of all finite Kripke models will be denoted
by FIN.

Let 𝑀 be a model and 𝑠, 𝑡 states in 𝑀 . A path from 𝑠 to 𝑡 is a finite
sequence of states of 𝑀 such that the first state is 𝑠, the last is 𝑡 and
for any pair of states 𝑠𝑖, 𝑠𝑖+1 in the sequence, there exists a 𝑗 such that
(𝑠𝑖, 𝑠𝑖+1) ∈ 𝑅

𝑗
𝑀 . The depth of a state 𝑠 is defined as the minimum length

of a path from the root to 𝑠 if such a path exists, otherwise as 𝜔. 𝑠 is said
to have in-degree one whenever it has a unique ancestor with respect to
the union of all accessibility relations in 𝑀 . 𝑀 will be called smooth iff
every state in 𝑊𝑀 apart from the root has in-degree one and finite depth.
For every model 𝑀 there is a smooth one 𝑀𝑠, known also as the unfolding
of 𝑀 , such that 𝑀 ∼ 𝑀𝑠. The proof of this result as well as of a general
version of the following lemma can be found in [dR95]. This lemma will
allow us, in what follows, to concentrate on functional simulations instead
of arbitrary ones.

Lemma 4.4.1 (Existence of functional simulations)
Let 𝑁 and 𝑀 be models such that 𝑁 is smooth, 𝑀 is m-saturated and

𝑀 ← 𝑁 . Then there exists a functional simulation from 𝑁 to 𝑀 . 2

Proof We will define a function 𝑆 : 𝑊𝑁 → 𝑊𝑀 and prove by induction
that for any 𝑡 ∈ 𝑊𝑁 , PE(𝑡) ⊆ PE(𝑆(𝑡)) (𝑆 can then be proved to be
a simulation in a manner identical to the one presented in lemma 4.3.3).
We set 𝑆(𝑟𝑁) = 𝑟𝑀 . Since 𝑀 ← 𝑁 it follows from lemma 4.3.2 that
PU(𝑀) ⊆ PU(𝑁) and thus PU(𝑆(𝑟𝑁)) ⊆ PU(𝑟𝑁), or PE(𝑟𝑁) ⊆ PE(𝑆(𝑟𝑁)).

Assume that 𝑆 has been defined for all states in 𝑁 of depth up to 𝑛− 1
and let 𝑡 ∈ 𝑊𝑁 be a state of depth 𝑛. Since 𝑁 is smooth, 𝑡 has a uniquely
defined ancestor 𝑡′ with respect to some relation 𝑅𝑖𝑁 . By the inductive
hypothesis, PE(𝑡′) ⊆ PE(𝑆(𝑡′)). So, for any finite set of PE sentences 𝐹 ⊆
PE(𝑡), it follows that 𝑡′ |= 3𝑖

⋀︀
𝐹 , hence 𝑆(𝑡′) |= 3𝑖

⋀︀
𝐹 , and as such, there

exists a 𝑢 ∈ 𝑊𝑀 such that 𝑢 |=
⋀︀
𝐹 and (𝑆(𝑡′), 𝑢) ∈ 𝑅𝑖𝑀 . In other words,

PE(𝑡) is finitely satisfiable on the 𝑅𝑖𝑀 -successors of 𝑆(𝑡′) which through the
m-saturation of 𝑀 gives us that PE(𝑡) is satisfiable at a 𝑅𝑖𝑀 -successor 𝑢′.
We set 𝑆(𝑡) = 𝑢′ and this completes the proof. �

4.4. FINITE MODELS 75

As explained in the end of the previous section, we plan to use the results
on m-saturated models as a basis for the corresponding ones in the finite
case. This, in general, boils down to the following scenario: given a finite
model 𝑀 and a sentence 𝜑 ∈ ℒK, we are interested in some property of
𝑀 *

[𝐺]
FIN 𝜑. Since 𝑀 is a finite model, it is also an m-saturated one, allowing

us to apply one of the results of section 4.3, yielding an m-saturated model
𝑁 such that 𝑀 ← 𝑁 and 𝑁 |=[𝐺] 𝜑. All that is needed in order to obtain
the corresponding result in the finite case is to construct a finite model 𝐿
such that 𝑀 ← 𝐿 ← 𝑁 and 𝐿 |=[𝐺] 𝜑. The following definition and lemma
will give us exactly such a tool.

Definition 4.4.2 (A modified filtration)
Let Σ be a set of sentences such that𝒜 ⊆ Σ,𝑀 a model and 𝐸 an equivalence
relation on 𝑊𝑀 .

1. Σ is subformula-closed iff for every 𝜑,

∙ ¬𝜑 ∈ Σ implies 𝜑 ∈ Σ,

∙ 𝜑 ∧ 𝜓 ∈ Σ implies 𝜑 ∈ Σ and 𝜓 ∈ Σ and

∙ 3𝑖𝜑 ∈ Σ implies 𝜑 ∈ Σ, for all 1 ≤ 𝑖 ≤ 𝑚.

(in the unabbreviated language).

2. We define an equivalence relation ≡Σ,𝐸 on 𝑊𝑀 as follows.

𝑠 ≡Σ,𝐸 𝑡 iff (∀𝜑 ∈ Σ, 𝑠 |= 𝜑⇔ 𝑡 |= 𝜑) ∧ (𝑠, 𝑡) ∈ 𝐸

We denote the ≡Σ,𝐸-equivalence class of 𝑠 by [𝑠].

3. We define a model 𝑀𝑓 as follows

∙ 𝑊𝑀𝑓
= {[𝑠] | 𝑠 ∈𝑊𝑀}

∙ 𝑟𝑀𝑓
= [𝑟𝑀]

∙ For all 𝑠, 𝑡 ∈𝑊𝑀 , ([𝑠], [𝑡]) ∈ 𝑅𝑖𝑀𝑓
if there exist states 𝑠′, 𝑡′ ∈𝑊𝑀

such that 𝑠′ ∈ [𝑠], 𝑡′ ∈ [𝑡] and (𝑠′, 𝑡′) ∈ 𝑅𝑖𝑀 .

∙ 𝑝 ∈ 𝑣𝑀𝑓
([𝑠]) iff 𝑝 ∈ 𝑣𝑀 (𝑠) for all 𝑝 ∈ 𝒜 ∩ Σ. 2

It is not hard to see that if Σ is subformula-closed then the model𝑀𝑓 defined
above is a slightly modified filtration of 𝑀 (see, e.g. [Che80, BdRV01]). As
such, it has similar properties to a filtration:

∙ Let 𝑛 be the number of 𝐸-equivalence classes in 𝑀 . If 𝑛 and |Σ| are
finite, then 𝑀𝑓 is finite and |𝑀𝑓 | ≤ 2|Σ| · 𝑛.

∙ For all formulae 𝜓 ∈ Σ and states 𝑠 ∈𝑊𝑀 , 𝑀, 𝑠 |= 𝜓 iff 𝑀𝑓 , [𝑠] |= 𝜓.

76 CHAPTER 4. MINIMAL REFINEMENT AND MODAL LOGIC

Lemma 4.4.3 (Bounded-size intermediary models for *FIN)
Let 𝑀 be a finite model, 𝐿 a possibly infinite model such that 𝑀 ← 𝐿
and 𝜑 a formula. Then there exists a finite model 𝑁 such that 𝑀 ←
𝑁 ← 𝐿 and that 𝑁 |=[𝐺] 𝜑 iff 𝐿 |=[𝐺] 𝜑. Moreover, |𝑁 | ≤ 2|𝜑|+|𝒜| · |𝑀 |. 2

Proof Define Σ as the set of sub-formulae of 𝜑 unioned with the set of
atomic propositions 𝒜, along with its atoms negated 𝒜𝑐. Let 𝐾 be the
smooth counterpart of 𝐿. Since 𝐿 ∼ 𝐾 and 𝑀 ← 𝐿 it follows that 𝑀 ← 𝐾.
Moreover, since 𝑀 is finite it is also m-saturated, thus lemma 4.4.1 applies,
giving us a functional simulation 𝑆 between 𝐾 and 𝑀 . By 𝑆(𝑡) we denote
the (unique) state 𝑡′ ∈ 𝑊𝑀 such that (𝑡, 𝑡′) ∈ 𝑆 for some state 𝑡 ∈ 𝑊𝐾 .
Using 𝑆 we define an equivalence relation 𝐸 on 𝑊𝐾 as

(𝑠, 𝑡) ∈ 𝐸 iff 𝑠, 𝑡 ∈𝑊𝐾 and 𝑆(𝑠) = 𝑆(𝑡)

Using 𝐾, Σ and 𝐸 we define 𝐾𝑓 (which we will abbreviate as 𝑁) and the
associated [·] mapping. Thus, it follows that

∙ Σ is finite by definition and has a size of at most |𝜑|+|𝒜|. Since 𝑆 maps
𝐾 into𝑀 , a finite model, the number of 𝐸-equivalence classes must be
finite and at most |𝑀 |. Therefore, 𝑁 is finite and |𝑁 | ≤ 2|𝜑|+|𝒜| · |𝑀 |.

∙ 𝑁 is a filtration of 𝐾 and as such the usual properties hold, i.e. 𝑁 |=[𝐺]

𝜑 iff𝐾 |=[𝐺] 𝜑 iff 𝐿 |=[𝐺] 𝜑 (for the global case, note that [·] is surjective
on 𝑊𝑁).

We now prove that the necessary simulations exist between 𝑀,𝑁,𝐿.

𝑁 ← 𝐿: We first prove that 𝑁 ← 𝐾. Since 𝐿 ∼ 𝐾 it then follows that
𝑁 ← 𝐿 as well. Define a relation 𝑄 ⊆𝑊𝐾 ×𝑊𝑁 such that

(𝑠, 𝑡) ∈ 𝑄 iff 𝑡 = [𝑠]

We prove that Q is a simulation:

∙ Obviously, (𝑟𝐾 , 𝑟𝑁) ∈ 𝑄 since 𝑟𝑁 = [𝑟𝐾].

∙ Also, (𝑠, [𝑠]) ∈ 𝑄 implies 𝑣𝐾(𝑠) = 𝑣𝑁 ([𝑠]) by the definition of 𝑣𝐾
and from the fact that Σ contains all the propositional letters.

∙ If (𝑠, 𝑡) ∈ 𝑅𝑖𝑀 then by definition there is an 𝑅𝑖𝑁 -successor of [𝑠]
that is the image of 𝑡, namely [𝑡].

𝑀 ← 𝑁 : Define a relation 𝑈 ⊆𝑊𝑁 ×𝑊𝑀 as

(𝑡, 𝑢) ∈ 𝑈 iff ∃𝑠 ∈𝑊𝐾 , [𝑠] = 𝑡 ∧ 𝑆(𝑠) = 𝑢

We prove that 𝑈 is a simulation.

4.4. FINITE MODELS 77

∙ By definition, [𝑟𝐾] = 𝑟𝑁 . Since 𝑆 is a simulation, 𝑆(𝑟𝐾) = 𝑟𝑀 .
Thus, (𝑟𝑁 , 𝑟𝑀) ∈ 𝑆.

∙ Suppose that (𝑡, 𝑢) ∈ 𝑆. Thus, there exists a state 𝑠 in 𝐾 such
that [𝑠] = 𝑡, therefore 𝑣𝐾(𝑠) = 𝑣𝑁 (𝑡) given that 𝒜 ⊆ Σ. More-
over, 𝑆(𝑠) = 𝑢, thus 𝑣𝐾(𝑠) = 𝑣𝑀 (𝑢). Therefore, 𝑣𝑁 (𝑡) = 𝑣𝑀 (𝑢).

∙ Assume that (𝑡1, 𝑡2) ∈ 𝑅𝑖𝑁 . That means that there exist two
states 𝑠1, 𝑠2 in 𝐾 such that [𝑠1] = 𝑡1, [𝑠2] = 𝑡2 and (𝑠1, 𝑠2) ∈ 𝑅

𝑖
𝐾 .

As such, since 𝑆 is a simulation, (𝑆(𝑠1), 𝑆(𝑠2)) ∈ 𝑅𝑖𝑀 . Thus,
(𝑡1, 𝑆(𝑠1)) ∈ 𝑈 and (𝑡2, 𝑆(𝑠2)) ∈ 𝑈 . �

With the help of this result we may approach the questions on minimal
refinement in the finite case. We start from non-triviality.

Lemma 4.4.4 (Non-triviality for FIN)
Let 𝜑 be a formula and 𝑀 a finite model. Then,

∙ there exists a finite model 𝑁 such that 𝑁 |= 𝜑 and 𝑀 ← 𝑁 iff

PU(𝑀), 𝜑 ̸⊢ ⊥.

∙ there exists a finite model 𝑁 such that 𝑁 |=𝐺 𝜑 and 𝑀 ← 𝑁 iff

PU(𝑀) ∪2*𝜑 ̸⊢ ⊥.

Moreover, it is decidable whether such a model exists. 2

Proof Left-to-right: In the local case, 𝑁 |= 𝜑. Since 𝑀 ← 𝑁 , it follows
that PU(𝑀) ⊆ PU(𝑁) so it cannot possibly be the case that PU(𝑀) is
inconsistent with 𝜑. The global case follows similarly by observing that
𝑁 |=𝐺 𝜑 iff 𝑁 |= 2*𝜑.

Right-to-left: We address the local and global case simultaneously. Since
PU(𝑀) ∪ 𝜑 is consistent (PU(𝑀) ∪ 2*𝜑), from lemma 4.3.6 it follows that
there exists an m-saturated model 𝑁 ′ such that 𝑁 ′ |= 𝜑 (𝑁 ′ |= 2*𝜑 or
equivalently 𝑁 ′ |=𝐺 𝜑), and 𝑀 ← 𝑁 ′. But then, by lemma 4.4.3 there
exists a finite model 𝑁 |= 𝜑 (𝑁 |=𝐺 𝜑) such that 𝑀 ← 𝑁 ← 𝑁 ′ and
|𝑁 | ≤ |𝑀 | · 2|𝜑|+|𝒜|.

Since the size of 𝑁 is bounded we can enumerate all the models that
satisfy (globally satisfy) 𝜑 with up to |𝑀 | ·2|𝜑|+|𝒜| states and check whether
any of these is simulated by 𝑀 . Thus the problem is decidable. �

As with m-saturated models, we will again consider two collections of
sets of finite models for stopperedness:

∙ 𝒞
𝜑
FIN = {modFIN(𝜑) | 𝜑 ∈ ℒK}

∙ 𝒞
𝐺𝜑
FIN =

{︀
mod𝐺FIN(𝜑)

⃒⃒
𝜑 ∈ ℒK

}︀

78 CHAPTER 4. MINIMAL REFINEMENT AND MODAL LOGIC

Theorem 4.4.5 (Stopperedness for FIN)
Let 𝑀 be a finite model. The ordering ≤𝑀 is stoppered over 𝒞

𝜑
FIN and

𝒞
𝐺𝜑
FIN. 2

Proof As in the proof of theorem 4.3.10, it is easy to check that when
𝑀 |=[𝐺] 𝜑 or PU(𝑀), 𝜑 ⊢ ⊥ (PU(𝑀) ∪ 2*𝜑 ⊢ ⊥) then for any model 𝑁 ∈

mod
[𝐺]
FIN(𝜑) there exists a model 𝑁 ′ ∈ mod

[𝐺]
FIN(𝜑) such that 𝑁 ′ ≤𝑀 𝑁 and

𝑁 ′ is minimal. So we assume that 𝑀 ̸|=[𝐺] 𝜑, that PU(𝑀), 𝜑 ̸⊢ ⊥ (PU(𝑀)∪
2*𝜑 ̸⊢ ⊥) and restrict our attention to the models in modFIN(PU(𝑀)∪{𝜑})
(modFIN(PU(𝑀) ∪2*𝜑)).

Let 𝐶 ⊆ modFIN(PU(𝑀)∪{𝜑}) (𝐶 ⊆ modFIN(PU(𝑀)∪2*𝜑)) be a chain
with respect to ≤𝑀 . Since finite models are m-saturated, from theorem 4.3.7
we obtain that there is an m-saturated model 𝐿 which satisfies PU(𝑀)∪{𝜑}
(PU(𝑀)∪2*𝜑) and is a lower bound of 𝐶 with respect to ≤𝑀 . But then, by
lemma 4.4.3, there is a finite model 𝑁 such that 𝑁 |=[𝐺] 𝜑 and𝑀 ← 𝑁 ← 𝐿.
Therefore, 𝑁 is a lower bound of 𝐶 and by applying Zorn’s lemma we obtain
stopperedness for the class of finite models. �

We continue with a set of decidability results concerning the finite case.
Firstly we prove that checking whether a specific model 𝑁 is minimal with
respect to a model 𝑀 and 𝜑, i.e. whether 𝑁 ∈𝑀 *[𝐺]FIN 𝜑, is decidable.

Lemma 4.4.6 (Decidability of minimality)
Let 𝑀,𝑁 be finite models and 𝜑 a sentence. There is an effective pro-

cedure for deciding 𝑁 ∈𝑀 *
[𝐺]
FIN 𝜑. 2

Proof We first test for non-triviality via lemma 4.4.4. If𝑀 *[𝐺]FIN𝜑 is trivial
then we check whether 𝑁 |=[𝐺] 𝜑. In this case, 𝑁 is minimal iff 𝑁 |=[𝐺] 𝜑.

Thus, we assume that 𝑀 *[𝐺]FIN 𝜑 is non-trivial. Then, we check whether
𝑀 ← 𝑁 . If not, then surely 𝑁 is not minimal. So, we assume that 𝑀 ← 𝑁 .
Now, 𝑁 is minimal iff there is no other model 𝑁 ′ ∈ mod

[𝐺]
FIN(𝜑) such that

𝑁 ′ <𝑀 𝑁 . Assume 𝑁 is not minimal. Then there exists 𝑁 ′ ∈ mod
[𝐺]
FIN(𝜑)

such that 𝑀 ← 𝑁 ′ ← 𝑁 but 𝑁 ′
9 𝑁 (by the definition of the ordering

and the assumption that 𝑀 ← 𝑁 it follows that if there exists 𝑁 ′ <𝑀 𝑁 ,
it will have to be due to the first clause of the definition). By applying
lemma 4.4.3 to the pair of models 𝑀,𝑁 ′ it follows that there exists a model
𝑁 ′′ ∈ mod

[𝐺]
FIN(𝜑) such that 𝑀 ← 𝑁 ′′ ← 𝑁 ′ and thus, 𝑁 ′′

9 𝑁 . Therefore,
𝑁 is not minimal iff there exists a model 𝑁 ′′ of 𝜑 which is strictly smaller
than 𝑁 with respect to ≤𝑀 and it has at most |𝑀 | · 2|𝜑|+|𝒜| states.

Consequently, given 𝑁,𝑀 and 𝜑, we can enumerate all the models that
satisfy 𝜑 (globally satisfy) have up to |𝑀 | ·2|𝜑|+|𝒜| states, of which there is a
finite number. For each model 𝐿 we check the simulations 𝑀 ← 𝐿, 𝐿← 𝑁 ,
𝐿9 𝑁 . There exists such a model iff 𝑁 /∈𝑀 *

[𝐺]
FIN 𝜑. �

4.4. FINITE MODELS 79

The next theorem characterises the structure of𝑀 *[𝐺]FIN𝜑 with respect to

the ordering. It asserts that each ≤𝑀 -equivalence class of models in𝑀 *[𝐺]FIN𝜑
contains a representative model of a bounded size.

Theorem 4.4.7 (Computable representatives of *FIN)
Let𝑀 be a finite model and 𝜑 a formula such that𝑀*

[𝐺]
FIN𝜑 is non-trivial.

Then, there is a finite, computable set of finite models Δ
[𝐺]
𝑀,𝜑 ⊆𝑀 *

[𝐺]
FIN 𝜑

with the property that for any model 𝑁 ∈𝑀 *
[𝐺]
FIN 𝜑 there is a model 𝑁 ′

such that

∙ 𝑁 ′ ∈ Δ
[𝐺]
𝑀,𝜑,

∙ 𝑁 � 𝑁 ′ and

∙ |𝑁 ′| ≤ |𝑀 | · 2|𝜑|+|𝒜|. 2

Proof Let 𝑁 ∈𝑀 *[𝐺]FIN 𝜑. The application of lemma 4.4.3 gives us a model
𝑁 ′ of 𝜑 such that 𝑀 ← 𝑁 ′ ← 𝑁 and |𝑁 ′| ≤ |𝑀 | · 2|𝜑|+|𝒜|. But since

𝑁 is minimal, it follows that 𝑁 � 𝑁 ′. Thus Δ[𝐺]
𝑀,𝜑 can be computed by

enumerating the finite models of 𝜑 that have at most |𝑀 | · 2|𝜑|+|𝒜| states
and checking them for minimality via lemma 4.4.6. �

A corollary of the above is that if for some finite model𝑀 and a formula
𝜑, 𝑀 *[𝐺]FIN𝜑 is non-trivial, then the number of simulation-equivalence classes

of finite models that constitute 𝑀 *[𝐺]FIN 𝜑 is finite. We will now examine the
decidability of reasoning about the results of the operation.

Theorem 4.4.8 (Decidability of reasoning about minimal models)
Assume that 𝑀 *

[𝐺]
FIN 𝜑 is non-trivial. Let 𝜓 be a formula in ℒPU ∪ ℒPE.

Then, there is an effective procedure for deciding 𝑀 *
[𝐺]
FIN 𝜑 |=[𝐺] 𝜓 (the

global and local cases can be combined, i.e. 𝑀 *FIN 𝜑 |=𝐺 𝜓). 2

Proof Consider the partitioning of 𝑀 *[𝐺]FIN 𝜑 by simulation-equivalence:
in view of the previous result, there is a (finite) number of simulation-

equivalence classes of finite models in 𝑀 *[𝐺]FIN 𝜑. Let 𝐸 ⊆𝑀 *
[𝐺]
FIN 𝜑 be such

an equivalence class. For any two models 𝑁1, 𝑁2 ∈ 𝐸 it holds that PU(𝑁1) =
PU(𝑁2) and equivalently PE(𝑁1) = PE(𝑁2). In other words, the problem

of checking whether all models in 𝑀 *
[𝐺]
FIN 𝜑 satisfy 𝜓 (locally/globally),

where 𝜓 ∈ ℒPU ∪ ℒPE, reduces to checking whether for every simulation-
equivalence class 𝐸 in𝑀 *[𝐺]FIN𝜑, there is a model 𝑁 ∈ 𝐸 such that 𝑁 |=[𝐺] 𝜓.

But Δ[𝐺]
𝑀,𝜑 contains at least one model from each such equivalence class, so

the problem is further reduced to whether Δ
[𝐺]
𝑀,𝜑 |=[𝐺] 𝜓 or not. Since

Δ
[𝐺]
𝑀,𝜑 is finite and computable, and the problem of checking (global/local)

80 CHAPTER 4. MINIMAL REFINEMENT AND MODAL LOGIC

satisfaction of a formula on a finite model is decidable, the overall problem
is also decidable. �

Indeed, it is easy to see that the query language can be any language
that is preserved under simulation-equivalence, e.g. ACTL.

4.5 Related work

Van der Meyden, in [vdM91], describes a framework designed to support ar-
tificial intelligence models of legal reasoning. Specifically, a logic for deontic
action specification is developed, and proved to be complete with respect to
the semantics presented therein. This logic is related to the framework pre-
sented here in that a process of minimisation is central to the model theory
of the language, and that part of the ordering relevant to this minimisation
is simulation. However, the approaches still differ significantly. Firstly, the
work presented here is geared towards reasoning about specifications and
processes rather than a framework designed for AI reasoning. Secondly,
van der Meyden’s work is closer to logic programming than this research,
in that the minimisation is employed to provide unique models of theories
(minima), rather than to perform changes to a theory or a model. Indeed,
van der Meyden’s effort is concentrated in ensuring a complete proof the-
ory with which derivation can be performed, rather than using the models
as possible representations of systems. Lastly, the language considered is
a clausal one, i.e. one that only allows reasoning about rules that contain
negation only in their heads, and not in their bodies.

Chapter 5

Minimal refinement and

Temporal Logic

5.1 Introduction

Modal logic is a basic language for expressing specifications and describing
processes. However, it is limited in what kinds of specifications it can ex-
press. For example, consider the case whereby a designer wants to minimally
refine a system by a property of the form ‘in all possible states of the sys-
tem, if the atomic variable Request is true then eventually RequestGranted
becomes true’. This property dictates that for every state 𝑠 that satisfies
Request, there is a finite path 𝑖 starting at 𝑠 and ending at a state 𝑡, such
that 𝑡 |= RequestGranted. It is easy to see that a modal formula 𝜑 cannot
express such a property as it can only impose restrictions on states whose
distance from 𝑠 is at most as great as the nesting depth of the modalities
in 𝜑; since that depth is finite, restrictions on states whose distance from
𝑠 is greater than that depth cannot be enforced and therefore an artificial
bound is put on the time the variable RequestGranted is satisfied.

To address this lack of expressiveness we will instantiate the framework
of minimal refinement for a temporal logic. We chose the logic ACTL [GL94],
a fragment of CTL [CES86], a branching-time temporal logic well-known for
its use in model checking. ACTL is a definite improvement on modal logic,
since it provides temporal operators such as until and eventually. It is also
incomparable with modal logic, since it is only universally quantified; for
example, the modal property ‘there is a next state that makes the atomic
variable 𝑝 true’ cannot be expressed in ACTL. Finally, ACTL is an expres-
sive language that is preserved by (fair) simulation, a fact that leads to a
set of results on minimal refinement obtained in a straightforward way.

In the following we will also do away with the distinction between local
and global minimal refinement; a formula of the form globally-𝜑 (AG𝜑)
immediately implies the satisfaction of 𝜑 on all of the (reachable) states of a

81

82 CHAPTER 5. MINIMAL REFINEMENT AND TEMPORAL LOGIC

model, rendering unnecessary the existence of two versions of the operation.
The outline of this chapter is as follows. Minimal refinement with ACTL

as the object language and transition systems with fairness constraints is
examined in section 5.2. The issues of non-triviality, stopperedness and
decidability are discussed in the same section. Finally, an implementation
is developed and a case study examined in section 5.3.

5.2 Minimal refinement in the temporal case

In this chapter, fair simulation is used to instantiate the notion of refine-
ment. Thus, the ordering ≤𝑀 will now be understood to involve fair sim-
ulations where it makes use of refinements (←). The operation of minimal
refinement in this context is

𝑀 *FTSF 𝜑 = min
≤𝑀

(modFTSF(𝜑))

where 𝑀 ∈ℳFTSF and 𝜑 ∈ ℒACTL.
Of course, the problem of triviality applies in this case too. It is easy

to see that if a ACTL formula does not force an inconsistent initial state
(e.g. a formula like 𝑝 ∧ ¬𝑝), then it has a very simple model: one that only
contains a few initial states and no transitions at all. It is also easy to
verify that such a model refines any other model that is compatible with
it, in terms of its initial states valuation (note that such a model satisfies
almost all ACTL formulae: the ones it does not are of the form 𝜑𝑝∧𝜓 where
𝜑𝑝 is a propositional formula which is false on its initial states). The next
lemma formalises this intuition, which incidentally demonstrates that in the
context of ACTL, non-triviality is a less interesting issue. For the purposes
of the next lemma, a formula that is formed by propositional atoms in some
set 𝒜, and the connectives ¬,∧,∨, will be called a propositional formula

on 𝒜.

Lemma 5.2.1 (Non-triviality for ACTL)
Let 𝑀 be a model in FTSF and 𝜑 a satisfiable formula of ACTL. Then,
the minimal refinement 𝑀 *FTSF 𝜑 is non-trivial iff there exists a state

𝑠 ∈ 𝑆𝑀 such that for any propositional formula 𝜓 on 𝒜𝑀 , 𝜑 |= 𝜓 implies

that 𝑀, 𝑠 |= 𝜓. 2

Proof Left-to-right: Assume that 𝑀 *FTSF 𝜑 is non-trivial; then, there
exists a model 𝑁 such that 𝑁 |= 𝜑 and 𝑀 ← 𝑁 . So, pick any state 𝑡 ∈ 𝑆𝑁
and its image 𝑠 ∈ 𝑆𝑀 under the witnessing fair simulation for𝑀 ← 𝑁 . Also,
pick any propositional formula 𝜓 on 𝒜𝑀 , which by the fact that 𝒜𝑀 ⊆ 𝒜𝑁
(by definition 2.4.4 and 𝑀 ← 𝑁), is a propositional formula on 𝒜𝑁 . If
𝜑 |= 𝜓 then 𝑁 |= 𝜓 (because 𝑁 |= 𝜑), i.e., for all states 𝑡′ ∈ 𝑆𝑁 , 𝑁, 𝑡′ |= 𝜓
and therefore 𝑁, 𝑡 |= 𝜓. But 𝜓 is also a ACTL formula, and as such, it is
preserved by fair simulation. Therefore, 𝑀, 𝑠 |= 𝜓.

5.2. MINIMAL REFINEMENT IN THE TEMPORAL CASE 83

Right-to-left: Given 𝑠 ∈ 𝑆𝑀 with the required assumptions, define a
model 𝑁 such that 𝑊𝑁 = 𝑆𝑁 = {𝑡}, 𝑅𝑁 = ℱ𝑁 = ∅, 𝒜𝑁 = 𝒜𝑀 and
𝑣𝑁 (𝑡) = 𝑣𝑀 (𝑠). It is easy to see that, trivially, 𝑀 ← 𝑁 . Now, assume that
𝑁, 𝑡 ̸|= 𝜑. Because of the absence of any fair path in 𝑁 starting at 𝑇 , it must
be that the valuation of 𝑡 is the one that falsifies 𝜑, something contradictory
with the assumption. �

We will proceed with a few lemmas that will form the basis for the rest of
the results on *FTSF. The definition of a product of two models inℳFTSF

follows, and is similar to the natural one, plus the item that defines the
fairness constraints.

Definition 5.2.2 (The synchronous product construction)
Given two models 𝐴,𝐵 define the synchronous product 𝐴 × 𝐵 to be a
model with the following parts.

∙ 𝑊𝐴×𝐵 = {(𝑎, 𝑏) | 𝑎 ∈𝑊𝐴, 𝑏 ∈𝑊𝐵, 𝑣𝐴(𝑎) ∩ 𝒜𝐵 = 𝑣𝐵(𝑏) ∩ 𝒜𝐴}

∙ 𝑆𝐴×𝐵 = (𝑆𝐴 × 𝑆𝐵) ∩𝑊𝐴×𝐵

∙ 𝒜𝐴×𝐵 = 𝒜𝐴 ∪ 𝒜𝐵

∙ 𝑣𝐴×𝐵((𝑎, 𝑏)) = 𝑣𝐴(𝑎) ∪ 𝑣𝐵(𝑏)

∙ (𝑎, 𝑏)→𝐴×𝐵 (𝑎′, 𝑏′) iff 𝑎→𝐴 𝑎
′ and 𝑏→𝐵 𝑏

′.

∙ ℱ𝐴×𝐵 = {(𝑃 ×𝑊𝐵) ∩𝑊𝐴×𝐵 | 𝑃 ∈ ℱ𝐴}∪
{(𝑊𝐴 ×𝑄) ∩𝑊𝐴×𝐵 | 𝑄 ∈ ℱ𝐵} 2

As noted, the definition of the product structure is the natural one: by
matching the common parts of the valuation, we construct composite states.
Accordingly, the transition relation is the restriction of the cartesian product
of the transition relations of the factors, on the resulting state space of the
product. As expected, it is easy to prove that 𝐴← 𝐴×𝐵 and 𝐵 ← 𝐴×𝐵
for any 𝐴 and 𝐵. The following result, proved in [GL94], asserts that a
sequence of states is a fair path in the product if and only if its projections
are fair paths in the product’s factors, and the corresponding pairs of states
are states in the product.

Lemma 5.2.3 (Fairness of paths in product structures [GL94])
Let 𝐴,𝐵 be models. The following conditions are equivalent.

1. 𝜋𝐴×𝐵 = (𝑎0, 𝑏0)(𝑎1, 𝑏1) . . . is a fair path in 𝐴×𝐵.

2. 𝜋𝐴 = 𝑎0𝑎1 . . . and 𝜋𝐵 = 𝑏0𝑏1 . . . are fair paths in 𝐴,𝐵 respectively

and for all 𝑖, (𝑎𝑖, 𝑏𝑖) ∈𝑊𝐴×𝐵. 2

The next lemma asserts that if a model is simulated by both of the
factors of a product, then it is simulated by the product as well.

84 CHAPTER 5. MINIMAL REFINEMENT AND TEMPORAL LOGIC

Lemma 5.2.4 (Factors and products)
Let 𝐴,𝐵,𝐶 be models such that 𝐵 ← 𝐴, 𝐶 ← 𝐴. Then, 𝐵 × 𝐶 ← 𝐴. 2

Proof Let 𝐻𝐵, 𝐻𝐶 be the witnessing fair simulations from 𝐴 to 𝐵,𝐶 re-
spectively. Define a relation 𝐻𝐵×𝐶 ⊆𝑊𝐴 ×𝑊𝐵×𝐶 ,

(𝑎, (𝑏, 𝑐)) ∈ 𝐻𝐵×𝐶 iff 𝑎 ∈𝑊𝐴, (𝑏, 𝑐) ∈𝑊𝐵×𝐶 , (𝑎, 𝑏) ∈ 𝐻𝐵, (𝑎, 𝑐) ∈ 𝐻𝐶

We will prove that 𝐻𝐵×𝐶 is a fair simulation from 𝐴 to 𝐵×𝐶. First observe
that by assumption 𝒜𝐴 ⊇ 𝒜𝐵 and 𝒜𝐴 ⊇ 𝒜𝐶 so 𝒜𝐴 ⊇ 𝒜𝐵 ∪ 𝒜𝐶 = 𝒜𝐴×𝐵.

1. For any state 𝛼 ∈ 𝑆𝐴 there is a state (𝛽, 𝛾) ∈ 𝑆𝐵×𝐶 such that
(𝛼, (𝛽, 𝛾)) ∈ 𝐻𝐵×𝐶 :

From the fact that 𝐻𝐵, 𝐻𝐶 are fair simulations it follows that there
exist states 𝛽 ∈ 𝑆𝐵 and 𝛾 ∈ 𝑆𝐶 such that (𝛼, 𝛽) ∈ 𝐻𝐵 and (𝛼, 𝛾) ∈ 𝐻𝐶 .
From the same fact it follows that 𝑣𝐴(𝛼) ∩ 𝒜𝐵 = 𝑣𝐵(𝛽) and 𝑣𝐴(𝛼) ∩
𝒜𝐶 = 𝑣𝐶(𝛾) so 𝑣𝐵(𝛽)∩𝒜𝐶 = 𝑣𝐶(𝛾)∩𝒜𝐵 and as such (𝛽, 𝛾) ∈𝑊𝐵×𝐶 .
Moreover, (𝛽, 𝛾) ∈ 𝑆𝐵×𝐶 . From the definition of 𝐻𝐵×𝐶 it follows that
(𝛼, (𝛽, 𝛾)) ∈ 𝐻𝐵×𝐶 .

2. For all 𝑎 ∈𝑊𝐴 and (𝑏, 𝑐) ∈𝑊𝐵×𝐶 , (𝑎, (𝑏, 𝑐)) ∈ 𝐻𝐵×𝐶 implies that

(a) 𝑣𝐴(𝑎) ∩ 𝒜𝐵×𝐶 = 𝑣𝐵×𝐶(𝑏, 𝑐):

As in the previous item, from (𝑎, (𝑏, 𝑐)) ∈ 𝐻𝐵×𝐶 we get that
𝑣𝐴(𝑎) ∩ 𝒜𝐵 = 𝑣𝐵(𝑏) and 𝑣𝐴(𝑎) ∩ 𝒜𝐶 = 𝑣𝐶(𝑐). Thus 𝑣𝐴(𝑎) ∩
𝒜𝐵×𝐶 = 𝑣𝐴(𝑎) ∩ (𝒜𝐵 ∪ 𝒜𝐶) = (𝑣𝐴(𝑎) ∩ 𝒜𝐵) ∪ (𝑣𝐴(𝑎) ∩ 𝒜𝐶) =
𝑣𝐵(𝑏) ∪ 𝑣𝐶(𝑐) = 𝑣𝐵×𝐶(𝑏, 𝑐).

(b) For every fair path 𝜋𝐴 = 𝑎0𝑎1 . . . in 𝐴 with 𝑎0 = 𝑎 there exists a
fair path 𝜋𝐵×𝐶 = (𝑏0, 𝑐0)(𝑏1, 𝑐1) . . . in 𝐵×𝐶 with (𝑏0, 𝑐0) = (𝑏, 𝑐)
such that for every 𝑖, (𝑎𝑖, (𝑏𝑖, 𝑐𝑖)) ∈ 𝐻𝐵×𝐶 :

From the fact that 𝐻𝐵, 𝐻𝐶 are fair simulations we obtain that
there exist fair paths 𝜋𝐵 = 𝑏0, 𝑏1, . . . and 𝜋𝐶 = 𝑐0, 𝑐1, . . . in 𝐵,𝐶
respectively, such that 𝑏0 = 𝑏, 𝑐0 = 𝑐 and for all 𝑖, (𝑎𝑖, 𝑏𝑖) ∈ 𝐻𝐵
and (𝑎𝑖, 𝑐𝑖) ∈ 𝐻𝐶 .

Since (𝑎𝑖, 𝑏𝑖) ∈ 𝐻𝐵 and (𝑎𝑖, 𝑐𝑖) ∈ 𝐻𝐶 , it follows that 𝑣𝐴(𝑎𝑖) ∩
𝒜𝐵 = 𝑣𝐵(𝑏𝑖) and 𝑣𝐴(𝑎𝑖) ∩ 𝒜𝐶 = 𝑣𝐶(𝑐𝑖), thus 𝑣𝐵(𝑏𝑖) ∩ 𝒜𝐶 =
𝑣𝐶(𝑐𝑖) ∩ 𝒜𝐵. As such, (𝑏𝑖, 𝑐𝑖) ∈ 𝑊𝐵×𝐶 . From lemma 5.2.3 it
follows that 𝜋𝐵×𝐶 is a fair path in 𝐵 × 𝐶. Moreover, from the
definition of 𝐻𝐵×𝐶 it follows that (𝑎𝑖, (𝑏𝑖, 𝑐𝑖)) ∈ 𝐻𝐵×𝐶 . �

With this result in our disposal we can aim to directly construct an al-
gorithm and a proof for the stopperedness of ≤𝑀 over *FTSF. The idea is
that, since fair simulation preserves ACTL, we can use the product opera-
tion to produce a model that refines a designated model 𝑀 , and also refines
another model that satisfies a formula 𝜑. Then, the product would have to

5.2. MINIMAL REFINEMENT IN THE TEMPORAL CASE 85

satisfy 𝜑 by construction. This last model must, essentially, contain exactly
all the possible behaviours allowed by the formula 𝜑, in other words, to be
a tableau of that formula. Several researchers have investigated such con-
structions for ACTL, e.g. [GL94, CGL96, Mai00, PMT02] with the following
general properties:

Lemma 5.2.5 (Existence of tableau constructions)
A function 𝜏 of the type ℒACTL →ℳFTSF can be defined such that:

for all 𝑀 ∈ℳFTSF, 𝜏 (𝜑)←𝑀 iff 𝑀 |= 𝜑

Moreover, 𝜏 is computable and |𝜏 (𝜑)| ≤ 2|𝜑|. A corollary of the above is

that
𝜑 |= 𝜓 iff 𝜏 (𝜑) |= 𝜓 2

The rest of the results in this section make use of tableau constructions,
but by only making reference to their general properties mentioned above.
A specific tableau construction, the one described in [CGL96], will be im-
plemented and used in section 5.3. We can now state the main result of this
section. The following theorem forms the basis of the results concerning
stopperedness and decidability for minimal refinement in ACTL.

M

τ(φ)

N

M × τ(φ)

modFTSF(φ)

Figure 5.1: 𝑀 × 𝜏 (𝜑) as the minimal model of 𝜑 with respect to ≤𝑀 .

Theorem 5.2.6 (A representative model of 𝑀 *FTSF 𝜑)
For any model 𝑁 inside 𝑀 *FTSF 𝜑, 𝑁 � 𝜏 (𝜑)×𝑀 . 2

Proof We prove that among the models of 𝜑 that are simulated by 𝑀 ,
𝜏 (𝜑)×𝑀 is the minimum, modulo fair simulation. Let 𝑁 be a model of 𝜑.

Assume that 𝑀 8 𝑁 . In that case it follows trivially by the second
clause of the definition of ≤𝑀 that 𝜏 (𝜑)×𝑀 ≤𝑀 𝑁 , since 𝑀 ← 𝜏 (𝜑)×𝑀
as mentioned previously.

86 CHAPTER 5. MINIMAL REFINEMENT AND TEMPORAL LOGIC

Thus, we assume that 𝑀 ← 𝑁 (see figure 5.1). Since 𝑁 is a model of
𝜑, it must be the case that 𝜏 (𝜑) ← 𝑁 , because 𝜏 (𝜑) is the tableau of 𝜑.
Therefore, 𝜏 (𝜑) × 𝑀 ← 𝑁 by applying lemma 5.2.4. Also, it holds that
𝑀 ← 𝜏 (𝜑)×𝑀 , thus 𝜏 (𝜑)×𝑀 ≤𝑀 𝑁 .

Thus, for all 𝑁 ∈ modFTSF(𝜑), it holds that 𝜏 (𝜑) ×𝑀 ≤𝑀 𝑁 . By the
preservation of ACTL by fair simulation if follows that 𝜏 (𝜑)×𝑀 is a model
of 𝜑 and therefore is the minimum with respect to ≤𝑀 in modFTSF(𝜑). �

The above result answers the questions of stopperedness and decidability
in one go. Specifically, the ordering ≤𝑀 is obviously stoppered over

𝒞FTSF = {modFTSF(𝜑) | 𝜑 ∈ ℒACTL}

Moreover, since 𝜏 (𝜑) ×𝑀 is finite and computable it follows that there is
an effective procedure for checking 𝑁 ∈ 𝑀 *FTSF 𝜑, i.e. checking whether
𝑁 � 𝜏 (𝜑)×𝑀 . Finally, for any 𝜓 ∈ ℒACTL there is an effective procedure
for checking 𝑀 *FTSF 𝜑 |= 𝜓, i.e. checking whether 𝜏 (𝜑)×𝑀 |= 𝜓 (observe
that since ACTL is preserved by fair simulation there is no need to restrict
𝜓 as was the case with modal logic).

Finally, we present a simple result that will be used later, in section
5.3. Essentially, it states that the tableau of a conjunction can be viewed
as the product of the tableaus of the conjuncts. This, in turn, characterises
iteration over minimal refinements in ACTL: a sequence of minimal refine-
ments is equivalent to a single minimal refinement by the conjunction of the
formulae appearing in the sequence.

Lemma 5.2.7 (Tableaus and conjunctions)
For all 𝜑, 𝜓 ∈ ℒACTL, 𝜏 (𝜑∧𝜓)� 𝜏 (𝜑)×𝜏 (𝜓). Therefore, 𝑀 *FTSF𝜑*FTSF
𝜓 �𝑀 *FTSF 𝜑 ∧ 𝜓. 2

Proof By the properties of the product, it follows that 𝜏 (𝜑)← 𝜏 (𝜑)×𝜏 (𝜓).
Fair simulation preserves ACTL, thus, since 𝜏 (𝜑) |= 𝜑 it follows that 𝜏 (𝜑)×
𝜏 (𝜓) |= 𝜑 and similarly 𝜏 (𝜑) × 𝜏 (𝜓) |= 𝜓 therefore 𝜏 (𝜑) × 𝜏 (𝜓) |= 𝜑 ∧ 𝜓.
But then, by lemma 5.2.5 we get that 𝜏 (𝜑 ∧ 𝜓)← 𝜏 (𝜑)× 𝜏 (𝜓).

Obviously 𝜏 (𝜑 ∧ 𝜓) |= 𝜑 ∧ 𝜓 therefore 𝜏 (𝜑 ∧ 𝜓) |= 𝜑. By applying again
lemma 5.2.5 we obtain 𝜏 (𝜑) ← 𝜏 (𝜑 ∧ 𝜓) and similarly 𝜏 (𝜓) ← 𝜏 (𝜑 ∧ 𝜓).
With the help of lemma 5.2.4 we are led to 𝜏 (𝜑) × 𝜏 (𝜓) ← 𝜏 (𝜑 ∧ 𝜓). This
completes the proof. �

5.3 Implementation and case study

We have proceeded to develop a prototype implementation of minimal re-
finement for ACTL and FTSF. It is easy to see that the product operation
is identical to the synchronous composition operation found in branching-
time model checkers like SMV [McM93]. Moreover, since SMV provides

5.3. IMPLEMENTATION AND CASE STUDY 87

an already existing framework for CTL (and thus ACTL) model-checking
we decided to use it for the purpose of (implicitly) computing the product
structure 𝜏 (𝜑)×𝑀 , after having generated 𝜏 (𝜑) with our implementation.

Therefore, our implementation must be able to produce the tableau
model, in SMV code form. This code will later be combined with the SMV
code describing the model the user wants to minimally refine, and fed to
the SMV model checker. We chose to implement the tableau construction
described in [CGL96], because it is an adequately powerful construct (in
the sense that it serves as a tableau for the full language) while being rel-
atively simple (it does not attempt to incorporate complex formalisms for
the fairness constraints, but only sets of sets of states). We will review the
construction here.

The basic idea is to decompose the given formula 𝜑 in its sub-formulae
and build a model the states of which are appropriate subsets of those
(slightly altered) sub-formulae.

Definition 5.3.1 (Sub-formulae and elementary formulae)
The set sub(𝜑) of the sub-formulae of 𝜑 and the set el(𝜑) of elementary
formulae of 𝜑 are defined as follows.

1. (a) If 𝜑 = ⊤ or 𝜑 = ⊥, then sub(𝜑) = {𝜑}.

(b) If 𝜑 = 𝑝 or 𝜑 = ¬𝑝 then sub(𝜑) = {𝜑, 𝑝}.

(c) If 𝜑 = AX𝜓, then sub(𝜑) = {𝜑} ∪ sub(𝜓).

(d) If 𝜑 is of the form 𝜑1 ∨ 𝜑2 or 𝜑1 ∧ 𝜑2 or A(𝜑1U𝜑2) or A(𝜑1R𝜑2),
then sub(𝜑) = {𝜑} ∪ sub(𝜑1) ∪ sub(𝜑2).

2. (a) If 𝜑 = ⊤ or 𝜑 = ⊥, then el(𝜑) = ∅.

(b) If 𝜑 = 𝑝 or 𝜑 = ¬𝑝 then el(𝜑) = {𝑝}.

(c) If 𝜑 = 𝜑1 ∨ 𝜑2 or 𝜑1 ∧ 𝜑2, then el(𝜑) = el(𝜑1) ∪ el(𝜑2).

(d) If 𝜑 = AX𝜓, then el(𝜑) = {𝜑} ∪ el(𝜓).

(e) If 𝜑 = A(𝜑1U𝜑2) or 𝜑 = A(𝜑1R𝜑2), then el(𝜑) = {AX⊥,AX𝜑} ∪
el(𝜑1) ∪ el(𝜑2).

where 𝑝 is a propositional letter. The formula AX⊥ denotes the lack of fair
paths beginning at the state which satisfies this formula. 2

The tableau 𝜏 (𝜑) of a formula 𝜑 is the tuple ⟨𝑊,𝑆,𝒜, 𝑣,→,ℱ⟩. The state
space of 𝜏 (𝜑) will be the set 2el(𝜑). Before we define the set of initial states
and the transition relation, we will define a map sat from el(𝜑) ∪ sub(𝜑) ∪
{⊤,⊥} to subsets of 2el(𝜑). Intuitively, sat(𝜓) will be the set of states of the
tableau that satisfy 𝜓.

1. sat(𝜓) = {𝑠 | 𝜓 ∈ 𝑠} where 𝜓 ∈ el(𝜑).

2. sat(¬𝑝) = {𝑠 | 𝑝 /∈ 𝑠} where 𝑝 is an atomic proposition.

88 CHAPTER 5. MINIMAL REFINEMENT AND TEMPORAL LOGIC

3. sat(𝜑1 ∨ 𝜑2) = sat(𝜑1) ∪ sat(𝜑2).

4. sat(𝜑1 ∧ 𝜑2) = sat(𝜑1) ∩ sat(𝜑2).

5. sat(A(𝜑1U𝜑2)) = (sat(𝜑2)∪(sat(𝜑1)∩sat(AXA(𝜑1U𝜑2))))∪sat(AX⊥).

6. sat(A(𝜑1R𝜑2)) = (sat(𝜑2)∩(sat(𝜑1)∪sat(AXA(𝜑1R𝜑2))))∪sat(AX⊥).

Definition 5.3.2 (The tableau construction)
The tableau 𝜏 (𝜑) = ⟨𝑊,𝑆,𝒜, 𝑣,→,ℱ⟩ is defined as follows.

∙ 𝑊 = 2el(𝜑).

∙ 𝑆 = sat(𝜑).

∙ 𝒜 = {𝑝 | 𝑝 ∈ el(𝜑)}.

∙ 𝑣(𝑠) = {𝑝 | 𝑝 ∈ 𝑠}.

∙ 𝑠→ 𝑡 if and only if
⋀︀
AX𝜓∈el(𝜑) 𝑠 ∈ sat(AX𝜓)⇒ 𝑡 ∈ sat(𝜓).

∙ ℱ = {(𝑊 ∖ sat (AXA (𝜑1U𝜑2))) ∪ sat (𝜑2) | AXA(𝜑1U𝜑2) ∈ el (𝜑)}.

The proof that this structure is indeed a tableau of 𝜑 in the sense of lemma
5.2.5 can be found in [CGL96].

Our implementation consists of a set of classes in C++ that can be
used for expressing an arbitrary ACTL formula and generating its tableau
model, via definition 5.3.2. Pictures of the model (in the EPS format) can
be be produced for visualisation purposes. Moreover, code can be produced
that describes the tableau in the SMV format. This implementation can be
obtained from http://www.cs.bham.ac.uk/~nkg/.

This set of classes comprises of:

∙ A base class Formula and its derived classes, for the representation
of ACTL formulae: Conjunction, Disjunction (for the propositional
connectives), AtomicFormula, NegatedAtomicFormula (for the propo-
sitional variables and their negations), Until (for AU), Release (for
AR) and Next (for AX). These classes provide auxiliary methods,
including methods for extracting the set of elementary formulae and
sub-formulae of an instance.

∙ A class Model that handles all issues related to the building, storing,
restoring, visualising and converting the model to SMV code.

∙ A class Tableau that is derived from Model. This class contains the
mechanisms for the building of the tableau model, given a Formula-
type object that represents an ACTL formula.

http://www.cs.bham.ac.uk/~nkg/

5.3. IMPLEMENTATION AND CASE STUDY 89

The algorithm for producing the tableau is the direct one, i.e. symbolic
techniques are have not been used. That limits the usefulness of our imple-
mentation because the tableau reviewed above (and all the other tableaus
from the literature that have been mentioned previously) is of exponential
size in the length of the formula. Therefore, our implementation will have
an exponential complexity in the length of the formula, unless significant
progress is made in the symbolic techniques for producing these tableaus, or
new tableau constructions that do not suffer from the state explosion prob-
lem are proposed. We describe possible avenues of research on this issue in
section 6.2.

In order to test the implementation and, more importantly, to examine
the process from a practical perspective, a case study was performed on the
well-known example of mutual exclusion. The purpose of this case study is
to demonstrate that the need for minimal refinement arises naturally when
designing a system, and that minimal refinement can automatically produce
models that satisfy the given requirements and are as close to the original
model, in terms of refinement.

We chose the mutual exclusion problem because it is a simple, yet non-
trivial example of a model/protocol, and because of its ubiquity in text-
books, e.g. in the book [HR00] (pages 181–200). The account appearing in
this book is incremental, and the stages shown demonstrate the process of
designing a model of a protocol which adheres to an increasing subset of the
final specifications.

The problem of mutual exclusion arises in concurrent computation when
shared resources are used. In particular, assume that two processes 𝑝1 and
𝑝2 are running on the same computer system by means of some kind of
time-sharing.1 Assume further that, at times, 𝑝1 and 𝑝2 need to use some
resource that cannot offer concurrent access, e.g. a printer. It is customary
that the system employs some method of mutual exclusion that will en-
sure that the resource is not accessed simultaneously by the two processes.
This can be accomplished through many techniques, either preemptive, such
as an operating system-level scheduler, or cooperative, such as the use of
semaphores. By critical section we will denote the duration within which
a process is accessing the resource.

Regardless of the specific techniques used, the scheduling must have a
number of properties. The following four are discussed in [HR00]:

Safety: No two processes should ever be in their critical sections at the
same time.

Liveness: If a process requests to enter its critical section, it will eventually
be allowed to do so.

Non-blocking: A process can always request to enter its critical section.
1We will only consider two processes for simplicity.

90 CHAPTER 5. MINIMAL REFINEMENT AND TEMPORAL LOGIC

No strict sequencing: There is no fixed order in which processes must
enter their critical section.

We will model the processes from the point of view of the protocol used
to enforce mutual exclusion. The processes, then, can be assumed to have
three potential states of execution:

∙ A process can be doing work which is unrelated to the shared resource.

∙ Or, it may request to enter its critical section.

∙ Or, it may be executing inside its critical section.

Therefore we will use two propositional variables per process, 𝑡𝑖 denoting
that process 𝑖 requests to enter its critical section, and 𝑐𝑖 to mean that
process 𝑖 is inside its critical section. Figure 5.2 presents a transition system
for a process. We are using an over-simplified model of a process, in the sense
that each process has to change state in every clock tick, i.e. it is not allowed
to stay in the same state. Also note that the initial state of the process is
denoted by a diamond.

t c

Figure 5.2: A model of a process.

Two of these processes were modelled in SMV code and combined by
asynchronous composition in SMV (note that this is not the same as the
synchronous product construction). This means that at any given moment
one process is chosen non-deterministically and is allowed to execute for
one step. The state variables are now named t1, t2, c1, c2. The result is
shown in figure 5.3. The solid edges indicate that process 1 is executing
and the dashed edges respectively for process 2. It is normally required
that the scheduling is fair in that both processes are selected for execution
infinitely often. This means that the set of solid edges has to be visited
infinitely often by a computation path, and similarly for the set of dashed
edges. Notice that the transition model actually constructed by the model
checker is more complicated as the asynchronous composition operation is
implemented by appropriate insertion of auxiliary variables. The distinction
will be suppressed in the following, for reasons of readability of the produced
models.

In this example, the constraints laid down earlier can be expressed for-
mally.

5.3. IMPLEMENTATION AND CASE STUDY 91

t1 t2

c1 t1,t2 c2

c1,t2 t1,c2

c1,c2

Figure 5.3: 𝑀1, the asynchronous composition of two processes.

Safety: AG(¬𝑐1 ∨ ¬𝑐2).

Liveness: AG(𝑡𝑖 → AF(𝑐𝑖)).

Non-blocking: AG(¬𝑡𝑖 ∧ ¬𝑐𝑖 → EX𝑡𝑖).

No strict sequencing: EG(𝑐1 ∧ E(𝑐1U(¬𝑐1 ∧ E(¬𝑐2U𝑐1)))).

Obviously, the non-blocking and non strict sequencing properties cannot be
expressed by ACTL formulae, so we will not deal with them. Moreover,
they happen to be satisfied by the models we will consider.

A further fairness constraint usually employed in this case is that we do
not consider computation paths that spend an inordinate amount of time in
a process’ critical section. These constraints are expressed by the formulae
¬𝑐1 and ¬𝑐2. In other words, we force the system to only consider paths
that visit an infinite number of times the non-critical parts of the processes.
We will make use of these constraints.

Obviously, the state 𝑐1𝑐2 has to be excluded from the set of reachable
states. We basically want to impose the formula 𝜑 = AG(¬𝑐1 ∨ ¬𝑐2), an
ACTL formula, to the above model. But we want to retain the computa-
tional paths that are, in a sense, independent from 𝜑. A first test for the
minimal refinement operation is to produce 𝑀1 *FTSF 𝜑.

Concerning the tableau of the safety formula 𝜑 = AG(¬𝑐1∨¬𝑐2), observe
that 𝜑 = A(⊥R(¬𝑐1 ∨ ¬𝑐2)). Therefore, el(𝜑) = {AX⊥,AX𝜑, 𝑐1, 𝑐2}, so the
tableau can have up to 16 states. However, we may remove the states
that are unreachable from the initial ones, as well as the states that have

92 CHAPTER 5. MINIMAL REFINEMENT AND TEMPORAL LOGIC

no successors. The resulting model can be seen in figure 5.4. Variables
introduced by the tableau construction that have the same truth value across
all reachable states have been suppressed. Also, note that there are no
fairness constraints.

c1 c2

Figure 5.4: The tableau of AG(¬𝑐1 ∨ ¬𝑐2).

Because of the simplicity of the derived tableau, the product structure
𝑀2 of 𝑀1 and 𝜏 (AG(¬𝑐1 ∨ ¬𝑐2)) is the expected, i.e. 𝑀1 without the state
𝑐1𝑐2 (figure 5.5). The fairness constraints remain the same, i.e. the sets of
states with ¬𝑐1 and with ¬𝑐2. 𝑀2 is identical the model that appears as the
"first attempt" for the mutual exclusion protocol in [HR00], page 182.

t1 t2

c1 t1,t2 c2

c1,t2 t1,c2

Figure 5.5: 𝑀2, the composition of 𝑀1 and 𝜏 (AG(¬𝑐1 ∨ ¬𝑐2)).

We observe that although the safety, non-blocking and no strict sequenc-
ing properties are true of 𝑀2, liveness fails. This is because there exists a
computation path which goes through the states 𝑡1 → 𝑡1, 𝑡2 → 𝑡1, 𝑐2 and
then loops back to 𝑡1, ad infinitum. This path violates the liveness property
because even though process 1 is requesting to enter its critical section, it

5.3. IMPLEMENTATION AND CASE STUDY 93

never manages to do so. We will attempt to repair this by minimally refining
𝑀2 with the liveness property. The liveness property is

liveness𝑖 = AG(𝑡𝑖 → AF𝑐𝑖) = AG(¬𝑡𝑖 ∨ AF𝑐𝑖)

which is obviously an ACTL formula. The goal is to minimally refine by
the formula liveness1 ∧ liveness2. However, this leads to a tableau that is
unnecessarily large, so as to increase substantially verification times: notice
that since liveness1 and liveness2 do not share any propositional variables,
the structure 𝜏 (liveness1∧ liveness2) will have exactly as many states as the
product of the number of states of the structures 𝜏 (liveness𝑖).

Under the present framework this cannot be avoided. However, we can
make use of lemma 5.2.7 and perform two minimal refinements. The advan-
tage is that SMV is quite efficient when dealing with product structures so
we do not have to re-invent this efficiency for our algorithms. The model for
𝜏 (liveness1) is shown in figure 5.6: note that since the model is nearly total,
in the sense that every state is connected to almost every other, the edges
shown in the figure are the ones that do not exist in the actual tableau.
Notice that in this tableau, the insertion of auxiliary variables cannot be
ignored because one of them 𝑝 = AXAF𝑐1 varies in truth value across the
reachable states. Moreover, this tableau imposes a non-trivial fairness con-
straint:

(¬𝑡 ∧ ¬𝑝) ∨ (𝑡 ∧ ¬𝑝 ∧ 𝑐) ∨ (𝑝 ∧ 𝑐)

The states that satisfy this condition are drawn bold in figure 5.6. These
must be visited infinitely often by the considered computational paths. The
introduction of fairness constraints is due to the need to satisfy eventualities
that derive from the until operator, implicit in AF.

p t,p c t,cc,p t,c,p

Figure 5.6: 𝜏 (liveness1), with edges shown wherever they do not exist in
the tableau.

Finally, 𝐶, the composition of𝑀2, 𝜏 (liveness1) and 𝜏 (liveness2) is shown
in figure 5.7. Another, perhaps more readable version of 𝐶 is shown in figure
5.8. Boxes are drawn around states that have identical observable valuations,
i.e., in terms of 𝑡𝑖 and 𝑐𝑖. Transitions that end at these boxes are meant as
abbreviations of a set of transitions leading to each state in the box.

94 CHAPTER 5. MINIMAL REFINEMENT AND TEMPORAL LOGIC

p1,p2

t2,p1,p2 t1,p1,p2

p2

t2,p2

p1

t1,p1

c2,p1,p2c2,p2 c2,p1c2 t1,t2,p1,p2 c1,p1,p2c1,p2 c1,p1c1

t1,c2,p1t1,c2,p1,p2 t2,c1,p2 t2,c1,p1,p2

Figure 5.7: 𝐶, the composition of 𝑀2, 𝜏 (liveness1) and 𝜏 (liveness2).

p1,p2

t2,p1,p2t1,p1,p2

c2 c1

p2

c1,p2

p1

c2,p2c2,p1 c1,p1

t2,p2

t1,t2,p1,p2

t2,c1,p2t2,c1,p1,p2t1,c2,p1,p2t1,c2,p1

t1,p1

c2,p1,p2 c1,p1,p2

Figure 5.8: 𝐶, reformatted for readability.

5.3. IMPLEMENTATION AND CASE STUDY 95

It is easy to see that the loop 𝑡1 → 𝑡1, 𝑡2 → 𝑡1, 𝑐2 and back to 𝑡1 still
exists, as it should since any finite number of iterations of this loop should be
permitted. However, the fairness constraints are now non-trivial because the
following ones have been added through the composition with the liveness
tableaus:

(¬𝑡𝑖 ∧ ¬𝑝𝑖) ∨ (𝑝𝑖 ∧ 𝑐𝑖)

for 𝑖 = 1, 2. This formula is derived from the previously mentioned fairness
constraint introduced by 𝜏 (liveness𝑖), plus the observation that states that
satisfy 𝑡𝑖 and 𝑐𝑖 do not exist. Given these constraints, it is now impossible
to execute the loop 𝑡1 → 𝑡1, 𝑡2 → 𝑡1, 𝑐2 for an infinite number of times, since
such a path would not visit infinitely often (actually, never) a state that
satisfies (¬𝑡1 ∧ ¬𝑝1) ∨ (𝑝1 ∧ 𝑐1). Indeed, when model checked by SMV, the
model 𝐶 was found to satisfy the liveness formulae.

t1 t2

c1 t1,t2 t1,t2 c2

c1,t2 t1,c2

Figure 5.9: 𝐶 ′, the "second attempt" for the mutual exclusion protocol.

The model 𝐶 ′ appearing in [HR00] as the second attempt for the mutual
exclusion protocol is shown in 5.9. As 𝐶, it satisfies the safety and liveness
properties. Also, it obviously differs from 𝐶 and is not equivalent to it,
neither in terms of fair bisimulation or simulation. However, it can be
shown that 𝐶 ← 𝐶 ′. That is to say, 𝐶 is strictly closer to the original model
𝑀2 in terms of fair simulation, than 𝐶 ′ is. This property, which is to be
expected due to the definition of minimal refinement, reflects the fact that
in producing 𝐶 from 𝑀2 no behaviours of 𝑀2 that are compatible with the
liveness properties have been removed. On the contrary, 𝐶 ′ exhibits a strict
temporal behaviour: if process 1 requests to enter its critical section when
process 2 is not (state 𝑡1), then it is guaranteed that process 1 will enter its
critical section in at most 2 time steps.

This concludes the case study. What has been shown, we believe, is that
minimal refinement arises naturally in the process of designing algorithms or
models. Moreover, it seems that when it does arise, solutions constructed by
hand are sometimes inferior in that they may introduce ad hoc restrictions

96 CHAPTER 5. MINIMAL REFINEMENT AND TEMPORAL LOGIC

that do not necessarily follow by the new requirements added to a model.
On the other hand, minimal refinement may produce models that are very
large in terms of state spaces, and that are difficult to understand.

The SMV code for 𝐶 that was produced by our implementation, follows.
Slight editing by hand has been performed for readability.

MODULE processes(c1,t1,c2,t2)

TRANS

!c1&!t1&!c2&!t2 & !next(c1)&!next(t1)&!next(c2)&next(t2)|

!c1&!t1&!c2&!t2 & !next(c1)&next(t1)&!next(c2)&!next(t2)|

!c1&!t1&c2&!t2 & !next(c1)&!next(t1)&!next(c2)&!next(t2)|

!c1&!t1&c2&!t2 & !next(c1)&next(t1)&next(c2)&!next(t2)|

!c1&!t1&!c2&t2 & !next(c1)&!next(t1)&next(c2)&!next(t2)|

!c1&!t1&!c2&t2 & !next(c1)&next(t1)&!next(c2)&next(t2)|

c1&!t1&!c2&!t2 & !next(c1)&!next(t1)&!next(c2)&!next(t2)|

c1&!t1&!c2&!t2 & next(c1)&!next(t1)&!next(c2)&next(t2)|

c1&!t1&c2&!t2 & !next(c1)&!next(t1)&next(c2)&!next(t2)|

c1&!t1&c2&!t2 & next(c1)&!next(t1)&!next(c2)&!next(t2)|

c1&!t1&!c2&t2 & !next(c1)&!next(t1)&!next(c2)&next(t2)|

c1&!t1&!c2&t2 & next(c1)&!next(t1)&next(c2)&!next(t2)|

!c1&t1&!c2&!t2 & next(c1)&!next(t1)&!next(c2)&!next(t2)|

!c1&t1&!c2&!t2 & !next(c1)&next(t1)&!next(c2)&next(t2)|

!c1&t1&c2&!t2 & next(c1)&!next(t1)&next(c2)&!next(t2)|

!c1&t1&c2&!t2 & !next(c1)&next(t1)&!next(c2)&!next(t2)|

!c1&t1&!c2&t2 & next(c1)&!next(t1)&!next(c2)&next(t2)|

!c1&t1&!c2&t2 & !next(c1)&next(t1)&next(c2)&!next(t2)|

0

INIT

!c1&!t1&!c2&!t2|

0

FAIRNESS !c1

FAIRNESS !c2

MODULE safety(c1,c2)

TRANS

!c1&!c2 & !next(c1)&!next(c2)|

!c1&!c2 & next(c1)&!next(c2)|

!c1&!c2 & !next(c1)&next(c2)|

c1&!c2 & !next(c1)&!next(c2)|

c1&!c2 & next(c1)&!next(c2)|

c1&!c2 & !next(c1)&next(c2)|

!c1&c2 & !next(c1)&!next(c2)|

!c1&c2 & next(c1)&!next(c2)|

!c1&c2 & !next(c1)&next(c2)|

0

INIT

!c1&!c2|

c1&!c2|

!c1&c2|

0

MODULE liveness(t,c,p)

5.3. IMPLEMENTATION AND CASE STUDY 97

TRANS

!t&!p&!c & !next(t)&!next(p)&!next(c)|

!t&!p&!c & !next(t)&next(p)&!next(c)|

!t&!p&!c & next(t)&next(p)&!next(c)|

!t&!p&!c & !next(t)&!next(p)&next(c)|

!t&!p&!c & next(t)&!next(p)&next(c)|

!t&!p&!c & !next(t)&next(p)&next(c)|

!t&!p&!c & next(t)&next(p)&next(c)|

!t&p&!c & !next(t)&next(p)&!next(c)|

!t&p&!c & next(t)&next(p)&!next(c)|

!t&p&!c & !next(t)&!next(p)&next(c)|

!t&p&!c & next(t)&!next(p)&next(c)|

!t&p&!c & !next(t)&next(p)&next(c)|

!t&p&!c & next(t)&next(p)&next(c)|

t&p&!c & !next(t)&next(p)&!next(c)|

t&p&!c & next(t)&next(p)&!next(c)|

t&p&!c & !next(t)&!next(p)&next(c)|

t&p&!c & next(t)&!next(p)&next(c)|

t&p&!c & !next(t)&next(p)&next(c)|

t&p&!c & next(t)&next(p)&next(c)|

!t&!p&c & !next(t)&!next(p)&!next(c)|

!t&!p&c & !next(t)&next(p)&!next(c)|

!t&!p&c & next(t)&next(p)&!next(c)|

!t&!p&c & !next(t)&!next(p)&next(c)|

!t&!p&c & next(t)&!next(p)&next(c)|

!t&!p&c & !next(t)&next(p)&next(c)|

!t&!p&c & next(t)&next(p)&next(c)|

t&!p&c & !next(t)&!next(p)&!next(c)|

t&!p&c & !next(t)&next(p)&!next(c)|

t&!p&c & next(t)&next(p)&!next(c)|

t&!p&c & !next(t)&!next(p)&next(c)|

t&!p&c & next(t)&!next(p)&next(c)|

t&!p&c & !next(t)&next(p)&next(c)|

t&!p&c & next(t)&next(p)&next(c)|

!t&p&c & !next(t)&next(p)&!next(c)|

!t&p&c & next(t)&next(p)&!next(c)|

!t&p&c & !next(t)&!next(p)&next(c)|

!t&p&c & next(t)&!next(p)&next(c)|

!t&p&c & !next(t)&next(p)&next(c)|

!t&p&c & next(t)&next(p)&next(c)|

t&p&c & !next(t)&next(p)&!next(c)|

t&p&c & next(t)&next(p)&!next(c)|

t&p&c & !next(t)&!next(p)&next(c)|

t&p&c & next(t)&!next(p)&next(c)|

t&p&c & !next(t)&next(p)&next(c)|

t&p&c & next(t)&next(p)&next(c)|

0

INIT

!t&!p&!c|

!t&p&!c|

t&p&!c|

!t&!p&c|

t&!p&c|

!t&p&c|

98 CHAPTER 5. MINIMAL REFINEMENT AND TEMPORAL LOGIC

t&p&c|

0

FAIRNESS

!t &!p &!c|

!t &!p & c|

t &!p & c|

!t & p & c|

t & p & c|

0

MODULE main

VAR

t1 : boolean;

t2 : boolean;

c1 : boolean;

c2 : boolean;

p1 : boolean;

p2 : boolean;

procs : processes(c1,t1,c2,t2);

safety : safety(c1,c2);

liveness1 : liveness(t1,c1,p1);

liveness2 : liveness(t2,c2,p2);

Chapter 6

Conclusions and

Further Work

The conclusions, unresolved problems and open questions encountered while
researching the topics of this thesis are presented in this chapter.

6.1 Implementations for theory change and fault

diagnosis

In chapter 3, Binary Decision Diagrams were used as a basis for the con-
struction of algorithms that implement several types of propositional theory
change. The aim was to demonstrate a framework that is general enough,
thereby enabling the implementation of many proposed forms of theory
change, while at the same time exploiting the benefits in efficiency that a
technology like BDDs has to offer. Generality was achieved firstly by pro-
viding results that operate on the premise that the theory revision or up-
date operation is defined by a faithful assignment (sections 3.2.1 and 3.2.2).
Moreover, several proposals from the literature of theory change were im-
plemented (sections 3.2.3, 3.2.4, 3.2.5 and 3.2.6), demonstrating that even
if the operation is not defined through a faithful assignment, in many cases
it is possible to construct a BDD algorithm for it.

In order to evaluate these algorithms, upper bounds of the sizes of the
main BDDs involved were produced by providing boolean circuit imple-
mentations that characterise them through theorem 2.2.1. In all of the
cases considered, the bounds produced were very satisfactory, i.e., linear or
polynomial. Attempts were also made to estimate the time complexity of
these algorithms, by producing upper bounds of it, using the known upper
bounds for the primitive operations on BDDs. These attempts were not en-
lightening, due to the fact that these known upper bounds for the primitive
operations are too pessimistic (cf. the bound for the andExists algorithm)

99

100 CHAPTER 6. CONCLUSIONS AND FURTHER WORK

and, therefore, of little use in estimating the complexity of compound oper-
ations.

Possible avenues of further research on the issue of these complexities
are

∙ Maybe it would be profitable to examine a BDD algorithm as a whole,
i.e., as an operation that is not understood in terms of the BDD prim-
itives it uses. This attempt would be a major undertaking in terms of
work, though.

∙ A more careful examination of the interactions of the BDD primitives
used, maybe in the context of assumptions on the nature of formulae
given to the theory change operation, would be meaningful, especially
in conjunction with further research on the complexities of the prim-
itive operations.

∙ Lastly, lower bounds for these complexities, in the form of hard-
ness or completeness results, may be obtainable by combining re-
sults on the theoretical complexity of the theory change operations
[EG92, Neb96, LS96, CDLS99], with results concerning the behaviour
of decision problems when inputs are offered in BDD form [FKVV99].

Orthogonal to these possibilities is the question of how to implement
query answering, rather than computing the representation of the changed
epistemic state. In some cases, the use of theory change does not aim to
compute the epistemic state per se, but in using it in finding out whether
a certain property is entailed. For example, if 𝜑 is to be changed by an
operation * under the formula 𝜓, we may be interested only in finding out
whether 𝜑*𝜓 |= 𝜒 for some formula 𝜒. In this case, it may be more profitable
in terms of efficiency to provide a single algorithm for this operation, rather
than two separate ones for * and |=. For propositional logic, query answering
is equivalent to mod(𝜑 * 𝜓) ⊆ mod(𝜒) or mod(𝜑 * 𝜓) ∩mod(¬𝜒) = ∅. Such
an emptiness check may be easier to perform on-the-fly rather than by first
computing mod(𝜑 * 𝜓) and then checking for inclusion.

In section 3.3.1, a formulation for fault diagnosis of combinational cir-
cuits was presented and benchmarked. The obtained results seem very
promising, showing a quadratic complexity for the fault diagnosis of a 𝑛-
bit adder. However, these results cannot be regarded as conclusive, and
further research is possible in trying to get a better picture of the com-
plexities involved. Firstly, the input of the diagnosis algorithm was a set
of uniformly distributed random bit-vectors. In reality, the faults usually
observed do not produce a uniform distribution of probability on the ob-
servations. Therefore, we could re-run the experiments described in section
3.3.3, with appropriately selected input observations. More importantly, it
is a fact that a 𝑛-bit adder is not a ‘hard’ circuit to diagnose. In this re-
spect, the experiments could be modified in order to benchmark diagnosis

6.2. MINIMAL REFINEMENT 101

for other circuits. In particular, good candidates would be circuits selected
from the ISCAS’85 collection for fault diagnosis.

What has been demonstrated, I believe, is the practicality of the ap-
proach contrary to the order of magnitude of the upper bounds calculated;
for fault diagnosis, with a moderately-sized computer system one can per-
form single runs of the diagnosis algorithm on reasonably large circuits. In
particular, it has been successfully executed for several times on adders of
1000 bits with each run taking 20 minutes on average. Note that in the
model presented, a 1000-bit adder leads to a state-space of 212000 interpre-
tations.

6.2 Minimal refinement

Minimal refinement, described in sections 1.2, 1.3 and in chapters 4 and 5, is
a method for changing a given model so that the result refines it minimally
while satisfying a new requirement.

Using minimal refinement, a designer can obtain a revised design out of
an old one and a new requirement. Moreover, the relationship between the
resulting model and the initial one is well-defined: all the behaviours the
newly obtained one exhibits are behaviours allowed by the initial system,
and, moreover, the set of behaviours is maximal in that it is the largest one
that satisfies the new property.

Minimal refinement has been studied under three frameworks:

Section 4.3: In modal logic, we studied minimal refinement over the class
of m-saturated models with sets of sentences as the requirements (local
and global satisfaction).

Section 4.4: Again, in modal logic, minimal refinement over finite struc-
tures was studied, with modal formulae as requirements (local and
global satisfaction).

Chapter 5: Finally, we studied minimal refinement over transition systems
with fairness constraints with formulae of ACTL as requirements.

In all of these cases, the conditions under which the minimal refinement
is non-trivial were characterised (lemmas 4.3.6, 4.4.4 and 5.2.1). In the
temporal case as well as in the finite modal one, non-triviality was proved
to be decidable (in the same lemmas). The ordering ≤𝑀 was proved to
be stoppered (theorems 4.3.10, 4.4.5 and 5.2.6). Lastly, effective ways to
represent minimal refinements in the finite modal case and the temporal
one, were presented in results 4.4.6, 4.4.7, 4.4.8 and 5.2.6.

Finally, a sample implementation of minimal refinement in the case of
ACTL was presented in section 5.3, along with a detailed study of an exam-
ple of a mutual exclusion protocol. Using this implementation, a designer

102 CHAPTER 6. CONCLUSIONS AND FURTHER WORK

can provide an ACTL formula 𝜑 and a system 𝑀 described in the language
of the SMV model checker. The implementation will then produce the min-
imal refinement 𝑀 *FTSF 𝜑, coded in the SMV language. The result can
then be fed into the SMV model checker where the designer can verify the
result against any further requirements.

Many possibilities exist for further work, as many questions are open
with respect to minimal refinement. For the case of modal logic and fi-
nite structures, an obvious research goal is to find tractable algorithms for
constructing minimal models. For the moment, the obvious and naive al-
gorithms for the modal case of minimal refinement are of non-deterministic
exponential complexity.

Studying the computational complexity of the associated problems is
another obvious research avenue. It is easy to see that these problems
will have an expensive worst-case complexity. After all, modal satisfiabil-
ity is PSPACE-complete, regardless of bounds on the number of proposi-
tional atoms or modalities in the language [Hal95], and the test for non-
triviality can easily be modified so as to solve modal satisfiability, rendering
it PSPACE-hard in the length of the formula. On the other hand, it is also
easy to show that its complexity is linear in the size of the model provided.

In conjunction to this, additional work can be focused on characterising
more precisely the structure of the set of the resulting models, since we have
obtained only very pessimistic upper bounds on its size.

In the case of temporal logics, of course it would be desirable to extend
the set of results to languages that are not universally quantified (like ACTL)
and therefore are not preserved by refinement. Unfortunately, as the results
we have obtained on ACTL depend crucially on this property, they are not
transferable to such new languages and therefore a whole new approach
would need to be developed.

Another direction for future work is the investigation of the tractability
of the method in the case of ACTL. We are currently using the tableau con-
struction introduced in [CGL96], which is of exponential size in the length
of the formula. Thus, the minimal refinement may be of intractable size,
as it is the product of the initial model and the tableau. One improvement
that comes at the cost of some expressiveness is to use safety-ACTL1, for
which there is a more compact tableau [KGG99], although still exponential
in the worst case.

Further research could focus on ways to address this state-explosion
problem from its implementation aspect, either by considering improve-
ments on the tableau construction or by looking into the application of
symbolic methods for generation of 𝑀 *FTSF 𝜑.

1Safety-ACTL is the fragment of ACTL obtained by only using AX and AW (the weak
counterpart of until).

Bibliography

[AGM85] C. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of
theory change: partial meet contraction and revision functions.
Journal of Symbolic Logic, 50:510–530, 1985.

[AH97] H. R. Andersen and H. Hulgaard. Boolean expression diagrams.
In Proceedings of the Twelfth Annual IEEE Symposium on

Logic in Computer Science, pages 88–98, Warsaw, Poland,
1997. IEEE Computer Society.

[AL91] M. Abadi and L. Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May
1991.

[And97] H. R. Andersen. An introduction to binary decision diagrams,
October 1997. Lecture Notes, URL: http://www.it.dtu.dk/
~hra.

[BB95] C. Boutilier and V. Becher. Abduction as belief revision. Arti-
ficial Intelligence, 77(1):43–94, 1995.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.J.
Hwang. Symbolic model checking: 1020 states and beyond. In
Proceedings of the Fifth Annual IEEE Symposium on Logic

in Computer Science, pages 1–33, Washington, D.C., 1990.
IEEE Computer Society Press.

[BdRV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, vol-
ume 53 of Cambridge Tracts in Theoretical Computer Sci-

ence. Cambridge University Press, 2001.

[BFG+91] A. Bouajjani, J. C. Fernandez, S. Graf, C. Rodriguez, and
J. Sifakis. Safety for branching time semantics. In Proceedings of
the 18th International Colloquium on Automata, Languages

and Programming, ICALP’91, volume 510 of LNCS, pages
76–92, Madrid, Spain, July 1991. Springer.

103

http://www.it.dtu.dk/~hra
http://www.it.dtu.dk/~hra

104 BIBLIOGRAPHY

[BMP97] H. Bezzazi, D. Makinson, and R. P. Pérez. Beyond rational
monotony: Some strong non-horn rules for nonmonotonic infer-
ence relations. Journal of Logic and Computation, 7(5):605–
631, 1997.

[Bor85] A. Borgida. Language features for flexible handling of excep-
tions in information systems. ACM Transactions on Database

Systems (TODS), 10(4):565–603, 1985.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677–
691, August 1986.

[Bry91] R. E. Bryant. On the complexity of VLSI implementations
and graph representations of boolean functions with application
to integer multiplication. IEEE Transactions on Computers,
40(2):205–213, February 1991.

[Bry92] R. E. Bryant. Symbolic boolean manipulation with ordered bi-
nary decision diagrams. ACM Computing Surveys, 24(3):293–
318, September 1992.

[Bry95] R. E. Bryant. Binary decision diagrams and beyond: Enabling
technologies for formal verification. In International Confer-

ence on Computer-Aided Design ICCAD’95, pages 236–243,
November 1995.

[CDLS99] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. The size
of a revised knowledge base. Artificial Intelligence, 115(1):25–
64, 1999.

[CE81] E. M. Clarke and E. A. Emerson. The design and synthesis of
synchronization skeletons using temporal logic. In Workshop

on Logics of Programs, volume 131 of LNCS, pages 52–72,
Yorktown Heights, New York, 1981. Springer-Verlag.

[CES86] E. M. Clarke, E.A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using temporal
logic specifications. ACM Transactions on Programming Lan-

guages and Systems, 8(2):244–263, 1986.

[CGL96] E. Clarke, O. Grumberg, and D. Long. Model checking. Nato
ASI Series F, volume 152, Springer-Verlag, 1996. Marktoberdorf
summer school.

[Che80] B.F. Chellas. Modal Logic: an introduction. Cambridge Uni-
versity Press, 1980.

BIBLIOGRAPHY 105

[Dal88] M. Dalal. Investigations into a theory of knowledge base revision:
Preliminary report. In NCAI’88 [NCA88], pages 475–479.

[dR95] M. de Rijke. Modal model theory. Technical Report CS–R9517,
CWI, Amsterdam, 1995.

[dV94] A. del Val. On the relation between the coherence and founda-
tions theories of belief revision. In Proceedings of the Twelfth

American National Conference on Artificial Intelligence,
pages 909–914, 1994.

[EG92] T. Eiter and G. Gottlob. On the complexity of propositional
knowledge base revision, updates, and counterfactuals. Artifi-

cial Intelligence, 52(2–3):227–270, 1992.

[FH99] N. Friedman and J. Y. Halpern. Belief revision: A critique. Jour-
nal of Logic, Language, and Information, 8:401–420, 1999.

[FKVV99] J. Feigenbaum, S. Kannan, M. Y. Vardi, and M. Viswanathan.
Complexity of problems on graphs represented as OBDDs.
Chicago Journal of Theoretical Computer Science, 1999(5),
August 1999.

[For89] K. D. Forbus. Introducing actions into qualitative simulation.
In IJCAI89 [IJC89], pages 1273–1278.

[Gär88] P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics

of Epistemic States. Bradford Books, MIT Press, Cambridge,
Mass, 1988.

[Gär92a] P. Gärdenfors, editor. Belief Revision. Cambridge Computer
Tracts. Cambridge University Press, Cambridge, 1992.

[Gär92b] P. Gärdenfors. Belief revision: An introduction. In Belief Re-

vision [Gär92a], pages 1–20.

[GL94] O. Grumberg and D. E. Long. Model checking and modular
verification. ACM Transactions on Programming Languages

and Systems, 16(3):843–871, May 1994.

[GM88] P. Gärdenfors and D. Makinson. Revisions of knowledge sys-
tems using epistemic entrenchment. In M. Vardi, editor, Pro-
ceedings of the Second Conference on Theoretical Aspects of

Reasoning about Knowledge, pages 83–95, Los Altos, CA, 1988.
Morgan Kaufmann.

[GM95] C. Grahne and A. O. Mendelzon. Updates and subjunctive
queries. Information and Computation, 116:241–252, 1995.

106 BIBLIOGRAPHY

[GPS98] C. Gröpl, H. J. Prömel, and A. Srivastav. Size and structure of
random ordered binary decision diagrams (extended abstract).
In Proceedings of the 15th Annual Symposium on Theoretical

Aspects of Computer Science (STACS’98), volume 1373 of
Lecture Notes in Computer Science, pages 238–248. Springer,
1998.

[GR02a] N. Gorogiannis and M. D. Ryan. Implementation of belief
change operators using binary decision diagrams. Studia Logica,
70:131–156, 2002.

[GR02b] N. Gorogiannis and M. D. Ryan. Requirements, specifications
and minimal refinement. In 9th Workshop on Logic, Language,

Information and Computation, volume 67 of Electronic Notes
in Theoretical Computer Science, Brazil, September 2002. El-
sevier.

[Gra98] C. Grahne. Updates and counterfactuals. Journal of Logic and
Computation, 8:87–117, 1998.

[Gro88] A. Grove. Two modelings for theory change. Journal of Philo-
sophical Logic, 17:157–170, 1988.

[GS88] M. L. Ginsberg and D. E. Smith. Reasoning about action i: a
possible worlds approach. Artificial Intelligence, 35:165–195,
1988.

[GZ01] J. F. Groote and H. Zantema. Resolution and binary decision
diagrams cannot simulate each other polynomially (extended ab-
stract). In Proceedings of the 4th International Andrei Ershov
Memorial Conference, Perspectives of System Informatics,

(PSI’01), volume 2244 of Lecture Notes in Computer Science,
pages 33–38. Springer, 2001.

[Hal95] J. Y. Halpern. The effect of bounding the number of primitive
propositions and the depth of nesting on the complexity of modal
logic. Artificial Intelligence, 75(2):361–372, 1995.

[HKR97] T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simu-
lation. In Proceedings of the Ninth International Conference

on Concurrency Theory (CONCUR), volume 1243 of Lecture
Notes in Computer Science, pages 273–287. Springer-Verlag,
1997.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism
and concurrency. Journal of the ACM, 32(1):137–161, January
1985.

BIBLIOGRAPHY 107

[Hol95] M. Hollenberg. Hennessy-Milner classes and process algebra. In
A. Ponse, M. de Rijke, and Y. Venema, editors, Modal Logic

and Process Algebra, pages 187–216. CSLI Publications, 1995.

[HR00] M. R. Huth and M. D. Ryan. Logic in Computer Science:

Modelling and Reasoning about Systems. Cambridge Univer-
sity Press, 2000.

[HR02] H. Harris and M. Ryan. Feature integration as an operation
of theory change. In F. van Harmelen, editor, Proceedings of

ECAI 2002, 15th European Conference on Artificial Intelli-

gence, pages 546–550. IOS Press, 2002.

[IJC89] Proceedings of the Eleventh International Joint Conference

on Artificial Intelligence, Detroit, Michigan, USA, August
1989.

[KGG99] S. Katz, O. Grumberg, and D. Geist. “Have I written enough
properties?” - A method of comparison between specification
and implementation. In Conference on Correct Hardware De-

sign and Verification Methods, pages 280–297, 1999.

[KLM90] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reason-
ing, preferential models and cumulative logics. Artificial Intel-
ligence, 44:167–207, 1990.

[KM89] H. Katsuno and A. O. Mendelzon. A unified view of propositional
knowledge base updates. In IJCAI89 [IJC89], pages 1413–1419.

[KM91] H. Katsuno and A. O. Mendelzon. Propositional knowledge base
revision and minimal change. Artificial Intelligence, 52:263–
294, 1991.

[KM92] H. Katsuno and A. O. Mendelzon. On the difference between up-
dating a knowledge base and revising it. In Gärdenfors [Gär92a],
pages 183–203.

[KP00] S. Konieczny and R. P. Pérez. A framework for iterated revi-
sion. Journal of Applied Non-Classical Logics, 10(3–4):339–
367, December 2000.

[LN] J. Lind-Nielsen. BuDDy — a binary decision diagram package.
URL: http://www.itu.dk/research/buddy/.

[LS95] P. Liberatore and M. Schaerf. Relating belief revision and cir-
cumscription. In Proceedings of the Fourteenth International

Joint Conference on Artificial Intelligence (IJCAI’95), pages
1557–1563, Los Altos, 1995. Morgan Kaufmann.

http://www.itu.dk/research/buddy/

108 BIBLIOGRAPHY

[LS96] P. Liberatore and M. Schaerf. The complexity of model checking
for belief revision and update. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI’96),
pages 556–561. AAAI Press/The MIT Press, 1996.

[Mai00] M. Maidl. The common fragment of CTL and LTL. In Pro-

ceedings of the 41th Annual Symposium on Foundations of

Computer Science, pages 643–652, 2000.

[MC91] J. C. Madre and O. Coudert. A logically complete reasoning
maintenance system based on a logical constraint solver. In
Proceedings of the 12th International Joint Conference on

Artificial Intelligence, pages 294–299, Sydney, Australia, Au-
gust 1991. Morgan Kaufmann.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[Mil71] R. Milner. An algebraic definition of simulation between pro-
grams. In Proceedings of the 2nd International Joint Con-

ference on Artificial Intelligence, pages 481–489, London, UK,
September 1971.

[Nay94] A. C. Nayak. Iterated belief change based on epistemic entrench-
ment. Erkenntnis, 41:353–390, 1994.

[NCA88] Proceedings of the Seventh National Conference on Artificial

Intelligence, St. Paul, Minnesota, August 1988.

[Neb96] B. Nebel. How hard is it to revise a belief base? Technical
Report 83, Institut für Informatik, Albert-Ludwigs-Universität
Freiburg, August 1996.

[PMT02] H. Peng, Y. Mokhtari, and S. Tahar. Environment synthesis
for compositional model checking. In Proceedings of the IEEE

International Conference on Computer Design, pages 70–75.
IEEE Computer Society Press, September 2002.

[PR99] M. Plath and M. D. Ryan. SFI: a feature integration tool. Ad-
vances in Computing Science, Tool Support for System Spec-
ification, Development and Verification:201–216, 1999.

[PR01] M. Plath and M. D. Ryan. Feature integration using a feature
construct. Science of Computer Programming, 41(1):53–84,
2001.

[Rei87] R. Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

BIBLIOGRAPHY 109

[Rot99] H. Rott. Coherence and conservatism in the dynamics of belief.
part i: Finding the right framework. Erkenntnis, 50:387–412,
1999.

[RS97] M. D. Ryan and P. Schobbens. Counterfactuals and updates as
inverse modalities. Journal of Logic, Language and Informa-

tion, 6(2):123–146, 1997.

[Sat88] K. Satoh. Nonmonotonic reasoning by minimal belief revision. In
Proceedings of the International Conference on Fifth Gener-

ation Computer Systems, pages 455–462, Tokyo, Japan, 1988.

[Som] F. Somenzi. CUDD: CU decision diagram package. URL: http:
//vlsi.colorado.edu/~fabio/CUDD/.

[Som99] F. Somenzi. Binary decision diagrams. In M. Broy and R. Stein-
bruggen, editors, Calculational System Design, volume 173 of
NATO Science Series F: Computer and Systems Sciences,
pages 303–366. IOS Press, 1999.

[vBvEF93] J. van Benthem, J. van Eijck, and A. Frolova. Changing prefer-
ences. Technical Report CS-93-10, Centre for Mathematics and
Computer Science, Amsterdam, 1993.

[vdM91] R. van der Meyden. A clausal logic for deontic action specifi-
cation. In Proceedings of the International Logic Program-

ming Symposium, pages 221–238, San Diego, October 1991.
MIT Press.

[Wil97] M. Williams. Anytime belief revision. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, pages
74–80. Morgan Kaufmann, 1997.

[Win88] M. Winslett. Reasoning about action using a possible models
approach. In NCAI’88 [NCA88], pages 89–93.

[WJP01] É. Würbel, R. Jeansoulin, and O. Papini. Spatial information
revision: a comparison between 3 approaches. In Sixth Euro-

pean Conference on Symbolic and Quantitatives Approaches

to Reasoning with Uncertainty, volume 2143 of Lecture Notes
in Artificial Intelligence, pages 454–465, 2001.

[ZF96] Y. Zhang and N. Y. Foo. Updating knowledge bases with dis-
junctive information. In Proceedings of the Thirteenth Na-

tional Conference on Artificial Intelligence and Eighth In-

novative Applications of Artificial Intelligence Conference,
volume 1, pages 562–568, Portland, Oregon, August 1996. AAAI
Press/The MIT Press.

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

	Contents
	List of Definitions
	List of Lemmas and Theorems
	List of Figures
	Introduction
	Models of systems and their changes
	Minimal change
	Outline of this thesis
	Published work

	Background
	Theory change
	Belief revision as theory change
	The AGM approach
	Semantical approaches on theory change

	Binary decision diagrams
	Definitions and basic results
	Algorithms on binary decision diagrams
	Expression syntax for BDDs
	Upper bounds of BDD size and circuit implementations

	Modal logic
	The logic ACTL

	Using BDDs to implement Theory Change Operators
	Introduction
	Theory change operators as BDD algorithms
	Revision defined by faithful assignment
	Update defined by faithful assignment
	Borgida's operator
	Satoh's operator
	Dalal's operator
	Winslett's operator

	Fault diagnosis
	Fault diagnosis of boolean combinational circuits
	BDD formulation
	Implementation and experimental results

	Related work

	Minimal refinement and Modal Logic
	Introduction
	Minimal refinement in the modal case
	M-Saturated models
	Finite models
	Related work

	Minimal refinement and Temporal Logic
	Introduction
	Minimal refinement in the temporal case
	Implementation and case study

	Conclusions and Further Work
	Implementations for theory change and fault diagnosis
	Minimal refinement

	Bibliography

