
Implementation of belief change operators using BDDs

Nikos Gorogiannis and Mark D. Ryan ({nkg,mdr}@cs.bham.ac.uk)
School of Computer Science
University of Birmingham
Birmingham B15 2TT
UK

Abstract. While the theory of belief change has attracted a lot of interest from
researchers, work on implementing belief change and actually putting it to use in
real-world problems is still scarce. In this paper, we present an implementation
of propositional belief change using Binary Decision Diagrams. Upper complexity
bounds for the algorithm are presented and discussed. The approach is presented
both in the general case, as well as on specific belief change operators from the
literature. In an effort to gain a better understanding of the empirical efficiency
of the algorithms involved, a fault diagnosis problem on combinational circuits is
presented, implemented and evaluated.

Keywords: belief revision, binary decision diagrams, fault diagnosis

1. Introduction

When an agent acquires information which contradicts its current be-
liefs, it is obliged to give up some of its beliefs in order to accommodate
the new information and remain consistent. The operation of consis-
tently incorporating new information into a belief state by removing
some of the old beliefs is called belief revision. The seminal work on
belief revision was done by Alchourrón, Gärdenfors and Makinson (see,
e.g., [7]). The AGM theory, as it is known, proposes a set K1–K8
of rationality postulates which any belief revision operator ought to
satisfy. More recently, a number of subtly different forms of revision
have been distinguished, such as update [11]. While revision is used to
model the evolution of belief about a static world, update models the
same process in a changing world.

As well as work on rationality postulates, several authors have pre-
sented specific revision or update operators [17, 6, 18, 2, 15]. There has
also been work on applications of belief revision beyond the modelling
of artificial agents. For example, applications of belief revision in fault
diagnosis have been proposed [6, 18]. We examine this application later
in this paper.

In this paper we are concerned with implementation of belief change
operators in a finite, propositional language. An important decision
in any implementation of belief change concerns the choice of repre-

c© 2012 Kluwer Academic Publishers. Printed in the Netherlands.

sl.tex; 13/07/2012; 11:49; p.1

2

sentation for belief states. Among the desiderata for such represen-
tations, one may include their representational compactness, syntax
independence and overall efficiency.

The goal of this paper is to explore implementations of belief change
operators on propositional logic by means of a data structure known
as the Binary Decision Diagram (BDD), thus addressing the above
criteria. BDDs are widely known because of their use in model checking,
a hardware verification technique which works by exhaustive state-
space exploration. In that context, their usage has led to a dramatic
improvement in the efficiency of model checking implementations, and
therefore in the size of model that can realistically be explored [13, 5].

The paper is structured as follows. We introduce BDDs and their
operations in the next section. In section 3, we review belief revision,
and in section 4 we implement some belief revision operators in terms
of BDDs, studying their complexity. Section 5 is devoted to a sub-
stantial example based on fault diagnosis, and our conclusions are
presented in section 6. Due to space limitations, a longer version of
this paper is available at ftp://ftp.cs.bham.ac.uk/pub/authors/

M.D.Ryan/01-sl.ps.gz.

2. Binary Decision Diagrams

2.1. Definitions and Basic Results

Binary Decision Diagrams (BDDs) are a compact and empirically ef-
ficient data structure for representing formulas in propositional logic.
The decision tree for the formula x ∨ y is shown in figure 1(a). The
dotted lines denote the path to be taken when a node is false, and
the solid lines when it is true. The decision tree shows four paths,
corresponding to the four possible values of x and y, and the leaves
show the resulting truth value of the formula in those cases. Decision
trees thus code up the truth-table for the formula. They are not space-
efficient, having 2n+1−1 nodes when the number of atomic propositions
in the formula is n.

The BDD for x∨ y is shown in figure 1(b). It is obtained by folding
together shared subtrees in the decision trees, and removing redundant
decision nodes. BDDs can be much more compact than the correspond-
ing decision trees. For example, the BDD for ((p∨ q)∧ r)∨ s, shown in
figure 1(c), contains 6 nodes, while the corresponding tree contains 31
nodes. In the worst case, BDDs can still have O(2n) nodes. However,
BDDs have been extensively used in verification where they appear to
be a compact representation in practice.

sl.tex; 13/07/2012; 11:49; p.2

3

y y

10 1 1

x

0 1

y

x

0 1

x4

x3

x2

x1

Figure 1. (a) The decision tree and (b) the BDD for the formula x∨y. (c) The BDD
for the formula ((p ∨ q) ∧ r) ∨ s.

Both decision trees and BDDs assume a fixed ordering of the vari-
ables into layers. The size of the decision tree is independent of that
ordering, but the size of the BDD is not; the space-economy introduced
by sharing subdiagrams can depend on the ordering of the variables.

A BDD is fully reduced if it has no redundant decision points and no
isomorphic subdiagrams. There is an efficient algorithm, called reduce,
for reducing a decision tree or partly-reduced BDD into its fully-reduced
form. Once reduced, BDDs are canonical : that means that there is a
unique reduced BDD for a given formula with respect to a fixed variable
ordering. More detailed information about BDDs and their algorithms
can be found in [1, 5] or the book [8].

2.2. Algorithms on Binary Decision Diagrams

After converting a formula to a BDD, that BDD can be manipu-
lated using several algorithms that implement logical operations. Some
of these algorithms are presented below along with their complexity
characteristics.

sl.tex; 13/07/2012; 11:49; p.3

4

2.2.1. Tautology, satisfiability and equivalence checking
Because of the canonicity of BDDs, it is easy to check whether a BDD
represents a tautology, or an unsatisfiable formula. Every tautology is
represented by the same BDD, namely, the BDD with a single node,
the terminal 1. Thus, tautology checking is a constant-time operation.

In the same spirit, a formula is satisfiable if its BDD representa-
tion is not the terminal node 0. Again, this results in a constant-time
operation. It follows from these observations that the conversion of
a formula to BDD form is NP- and coNP-hard in the length of the
formula. Consequently, since it is widely believed that NP6=coNP, it is
probably the case that the problem of converting a formula to a BDD
is not a member of NP∪coNP.

The canonicity property of BDDs implies that checking if two for-
mulas are equivalent by comparing their BDDs is very efficient. In BDD
packages like CUDD [16] or BuDDy [12], this can be done by pointer
comparison (and hence in constant time).

2.2.2. The algorithms apply, negate and restrict

Given two BDDs representing the formulas φ and ψ (having |φ| nodes
and |ψ| nodes respectively), together with a binary connective •, the al-
gorithm apply computes the BDD for φ•ψ. The worst-case complexity
of apply is O(|φ| · |ψ|) and it is known to be a tight bound [3].

Given the BDD for φ, the algorithm negate computes the BDD
for ¬φ by using apply and the → operator: ¬φ = φ → ⊥. Thus its
complexity is O(|φ| · 1) = O(|φ|).1

These two algorithms provide a way for converting a formula to a
BDD, without creating the decision tree and then reducing it to BDD
form. The BDD representation of a propositional variable is a tree with
three nodes, the root labelled by the variable and the two terminal
nodes, 1 and 0. Using these and the algorithms apply and negate, a
formula can be recursively converted to the equivalent BDD. Indeed,
this is the only algorithm for conversion used in practice, since convert-
ing a formula to its decision tree is always an exponential operation in
the number of variables, whereas conversion using apply is expensive
only in the worst case.

The result φ[C/p] of the substitution of a variable p by a boolean
constant C can be computed with the algorithm restrict. The worst-
case complexity is O(|φ|) (see [3]). As noted in the same paper, the

1 Note that negate could be implemented as a constant-time operation, by swap-
ping the terminal nodes. However, for reasons of efficiency, most BDD packages use
the same terminal nodes for all stored BDDs, all of which would be negated if the
terminal nodes were to be swapped.

sl.tex; 13/07/2012; 11:49; p.4

5

algorithm can be modified to perform a specific number of restrictions
simultaneously without affecting its complexity.

2.2.3. The algorithms exists and forall

The formulas ∀p. φ and ∃p. φ are defined as

∀p. φ = φ[>/p] ∧ φ[⊥/p]
∃p. φ = φ[>/p] ∨ φ[⊥/p]

The BDDs for ∀p. φ and ∃p. φ can be computed from the BDD for φ by
the algorithms apply and restrict, with complexity O(|φ|2) (see [4]).
Consecutive quantification over k variables using this algorithm results

in an upper bound for the worst-case complexity, of O(|φ|2k).
McMillan, in [13], describes the andExists algorithm, for computing

an operation that occurs very often in model checking and which plays a
central role in our formulation of propositional belief change. Let φ and
ψ be two BDDs. The algorithm computes the consecutive existential
quantification over a specified vector of variables, of the conjunction
φ ∧ ψ, but without explicitly forming the BDD for it. An upper bound
on the time complexity of this algorithm is O(|φ| · |ψ| · 22n), where n is
the total number of variables appearing in φ and ψ. However, intuition
and empirical evidence both suggest the existence of a smaller bound.
The resulting BDD has a size bounded by the general worst-case of
the result, i.e. O(2n−k). McMillan also proves that the computation of
the BDD expressing an existential quantification over n variables, is
NP-complete.

The universal quantification can be computed by using the fact
that ∀ ≡ ¬∃¬ and the algorithm negate, giving the same complexity.
The dual algorithm to andExists, impliesForall, is derivable from
andExists and negate, having again the same complexity bound.

2.2.4. The algorithm replace

As we see later, we often need to replace some variables in a BDD by
other variables, corresponding to substitution in logic. This is a linear-
time operation if the BDD resulting from the substitution obeys the
variable ordering chosen. If it does not, then re-ordering is necessary
and in general this can take exponential time.

2.3. Expression syntax for BDDs

We use a bold-face logical notation to denote the algorithms of the
preceding section, as summarised in the table below. These algorithms
will be used to describe belief change operators. We now present some

sl.tex; 13/07/2012; 11:49; p.5

6

derived algorithms which will be useful for that purpose. These can be
thought of as macros.

algorithm (with arguments) notation
apply(B1, B2,→) B1→→→ B2

negate(B) ¬¬¬B
exists(p, B) ∃∃∃p. B
andExists(p, B1, B2) ∃∃∃p. (B1 ∧∧∧B2)
replace(p,p′, B) B[p′/p]

We have seen how BDDs represent formulas by representing the set of
models that satisfy them. To implement some belief change operators,
we need to be able to represent relations on models as BDDs. A relation
can be thought of as a function which, given two models, returns a
boolean value. Therefore, it can be represented as a BDD over two
copies of the atomic propositions, which we call unprimed and primed,
and write as p,p′.

For example, consider the ordering ≤ shown in figure 2 over the four
models {pq, pq, pq, pq} of the language {p, q}. Its BDD is also shown in
the figure. To determine whether m ≤ m′, we supply the truth values
p for m and p′ for m′ to the BDD and get a boolean value result.

pq

pq

pqpq

p

p′

q

q′

0 1

Figure 2. An ordering on the models of the language {p, q}, and its BDD.

If BR is a BDD representing a relation R over unprimed and primed
variables, then the BDD for the inverse relation is obtained by simul-
taneously renaming the unprimed variables to primed, and the primed
ones to unprimed. We write this as BR[p/p′,p′/p]. The strict counter-

part of the relation R is given mathematically as R ∩ R−1. Thus, the

sl.tex; 13/07/2012; 11:49; p.6

7

BDD for the strict counterpart is given by

strict(BR) = BR ∧∧∧¬¬¬(BR[p/p′,p′/p])

Note that the swapping of the primed and unprimed variables will
necessitate re-ordering the variables, and is therefore an expensive op-
eration. This is the only instance of variable replacement in the pa-
per which does not respect the ordering of variables; all the other
replacements can be performed in linear-time.

The R-minimal elements of X are defined as

minR(X) = {w ∈ X | ∀v ∈ X vR<w}

whereR< is the strict counterpart ofR. The BDD algorithm for minR(X),
in terms of the BDDs BR, BX for R and X, can be written as

min(BR, BX) = ((∀∀∀p. (BX →→→¬¬¬strict(BR)))[p/p′])∧∧∧BX

If the relation R is known to be total, then the minimal set of
elements can be written more simply, and this permits an optimisation
in the way we calculate the BDD for min. If R is total, then

minR(X) = {w ∈ X | ∀v ∈ X wRv}

and therefore the BDD for min need not use strict:

min(BR, BX) = (∀∀∀p′. (BX [p′/p]→→→ BR))∧∧∧BX

2.4. Upper Bounds of BDD Size Based on Circuit
Implementations

The main theorem for proving upper bounds of the size of some BDDs
that appear in the following sections, proved in [13], is presented in this
section.

Let φ be an n-ary boolean function and suppose a logical circuit
computing φ is given. This circuit will contain a number m of blocks
that are either gates (binary or otherwise) or primary inputs (inputs
are counted as blocks with zero inputs and one output). Let a linear
order of the circuit be a numbering of the blocks from 1 to m, with the
block producing the primary output numbered last. Then, the forward
cross section at block i is the total number of wires from an output of
a block j such that j < i to an input of a block k such that i ≤ k.
The forward width wf of the circuit (with respect to the linear order
chosen) is defined as the maximum forward cross section for all blocks.

Similarly, the reverse cross section at block i is the total number of
wires from an output of a block j such that j > i to an input of a

sl.tex; 13/07/2012; 11:49; p.7

8

block k such that i ≥ k. The reverse width wr of the circuit (again
with respect to the linear order) is defined as the maximum reverse
cross section at any block. Then, the following theorem holds:

THEOREM 1 ([13]). If a circuit computing function φ has forward
width wf and reverse width wr for some linear order L, then there is
a BDD representing function φ of size bounded by n2wf2

wr
, where n is

the number of inputs of the circuit.

3. Belief Change

3.1. Belief Revision

Belief revision refers to the process of incorporating new knowledge in
an agent’s prior beliefs, even when the new information contradicts the
previous ones. Agents are said to be in an epistemic state, representing
their beliefs and any other relevant epistemic information. The change
of epistemic state in the light of new information is the phenomenon
that revision is supposed to explain.

The seminal work in belief revision is that of Alchourrón, Gärdenfors
and Makinson (see, e.g., [7]). They modelled epistemic states as sets of
formulas closed under consequence, and proposed a set of rationality
postulates K1–K8 which they argue any revision operator ought to
satisfy.

Katsuno and Mendelzon [9] have studied the case where the proposi-
tional language is finite. In that case, epistemic states may be modelled
as propositional formulas instead of consequence-closed theories. This
setting is rather simpler; since we are interested in implementations,
and any implementation necessarily involves only finitely many atomic
propositions, we adopt the setting of Katsuno and Mendelzon.

The revision operator ◦ : L × L → L takes two formulas and
returns another formula. The formula φ ◦ ψ represents the epistemic
state resulting from revising φ with ψ; intuitively, this is intended to
be ψ together with whatever ‘parts’ of φ can be consistently retained.
Katsuno and Mendelzon formulate a set of postulates R1–R6 which, for
finite languages, are equivalent to the AGM postulates K1–K8. The
intention of the postulates is to encode minimal change, and this can
be made precise by the following theorem. Consider a function that
assigns to each formula ψ a total pre-order ≤ψ on interpretations, that
is, a binary relation on the set of interpretations U that is transitive,
reflexive and total. This function is called a faithful assignment if and
only if the following hold (where mod(ψ) is the set of models of ψ):

sl.tex; 13/07/2012; 11:49; p.8

9

F1. If w, v ∈ mod(ψ), then w <ψ v does not hold.

F2. If w ∈ mod(ψ) and v /∈ mod(ψ) then w <ψ v holds.

F3. If ψ ≡ φ then ≤ψ=≤φ.

Then, Katsuno and Mendelzon prove the following representation the-
orem:

THEOREM 2 ([10]). A revision operator ◦ satisfies conditions R1–R6
if and only if there exists a faithful assignment that maps each formula
ψ to a total pre-order ≤ψ such that

mod(ψ ◦ µ) = min≤ψ(mod(µ))

3.2. Belief Update

In [11], Katsuno and Mendelzon make an important distinction on the
meaning of some belief change operators. They argued that not all belief
changes are revisions, i.e. incorporation of new information about a
static world. They identified and characterised with a set of postulates
and a representation theorem, the form of belief change they call belief
update. This kind of belief change aims to integrate new information
with an agent’s prior beliefs about a changing world. In the spirit of
the generic approach, they list a number of postulates U1–U8 that any
update operator 3 should satisfy [11].

In the context of belief updates, a function that maps each model
w to a partial pre-order ≤w is called a faithful assignment if it satisfies
the following condition:

− For any models w, v ∈ U , if w 6= v then w <w v.

Under this framework, the following representation theorem holds:

THEOREM 3 ([11]). An update operator 3 satisfies conditions U1–
U8 if and only if there exists a faithful assignment that maps each
interpretation w to a partial pre-order ≤w such that

mod(ψ3µ) =
⋃

w∈mod(ψ)

min≤w(mod(µ))

sl.tex; 13/07/2012; 11:49; p.9

10

4. Implementing belief change operators as BDD algorithms

We saw in section 2 that propositional formulas may be represented
as BDDs, and that the apply algorithm can be used to implement the
binary operators ∧, → etc, while the negate algorithm implements ¬.
This section is concerned with the implementation of revision operators
and update operators.

4.1. Revision defined by faithful assignment

Theorem 2 tells us how to compute φ ◦ ψ, given a faithful assignment.
To implement this definition, we represent relations on models as BDDs
in the manner described in section 2.3. Theorem 2 assumes a faithful
assignment which, given a formula φ, returns an ordering≤φ. Therefore,
we assume an operation fa taking a BDD over p, which represents φ,
and returning a BDD over p,p′, representing ≤φ.

By the theorem, mod(ψ ◦ µ) = min≤ψ(mod(µ)). Therefore, given
BDDs Bψ, Bµ for formulas φ, µ, we can compute the BDD for ψ ◦ µ as

min(fa(Bψ), Bµ)

where the operator min on BDDs is described in section 2 for total
relations.

Suppose that the number of propositional variables is n (in each
copy of the variables), the worst-case time complexity of the operation
fa is given as |fa| and also, the size of the resulting BDD as |fa(Bψ)|.
By expanding the macros in the above formula we get:

Bµ ∧∧∧∀∀∀p′. (Bµ[p′/p]→→→ fa(Bψ))

An upper bound for the worst-case complexity of the revision can be
computed as follows:

Operation Time Complexity Result Size
Bµ[p′/p] O(|Bµ|) O(|Bµ|)
fa |fa| |fa(Bψ)|
∀∀∀p′. (· →→→ ·) O(|Bµ| · |fa(Bψ)| · 24n) O(2n)
Bµ∧∧∧ O(|Bµ| · 2n) O(2n)

Thus, an upper bound of the complexity of the whole operation is:

O(max{|fa|, |Bµ| · |fa(Bψ)| · 24n})

This upper bound measure may not be indicative of the true situation
because:

sl.tex; 13/07/2012; 11:49; p.10

11

− Empirical evidence in the context of model checking indicates that
the average-case complexity of these operations is much lower than
their worst case, but it is very hard to formulate in a precise sense
what exactly the average case is.

− This measure depends crucially on the complexity of the BDD
representation of the ordering on models. All of the model-based
operators proposed define orderings on models that require at
least one quantification (for examples see the following sections).
Thus, different specific revision strategies will yield very different
concrete complexities.

In the following subsections, we look at some specific belief revision
operators defined in the literature.

4.2. Borgida

An interpretation v can be thought as a set containing only the propo-
sitional variables that hold in v. The symmetric set-difference v4w of
two interpretations v and w, is the set containing all the propositional
variables whose values differ in v and in w. Given a formula µ and an
interpretation v, the set of differences of v and µ can be defined as:

diff(v, µ)
def
= {v4w | w ∈ mod(µ)}

Borgida introduced a revision operator in [2] that orders interpre-
tations according to the set-inclusion of symmetric set-differences. The
definition of ψ ◦ µ has two main parts:

− If ψ ∧ µ is consistent, then ψ ◦ µ = ψ ∧ µ (R2).

− Otherwise, w is a model of ψ ◦ µ if there is a model v of ψ, such
that

v4w ∈ min⊆(diff(v, µ))

Borgida’s revision is known to satisfy R1-R5 but not R6 (see [10]). As
such, it is not definable by a faithful assignment. Let us look how this
is implemented in BDDs.

If ψ ∧ µ is inconsistent then

mod(ψ ◦ µ) = {w | ∃v. (v ∈ mod(ψ) ∧ v4w ∈ min⊆(diff(v, µ)))}
= {w | w ∈ mod(µ) ∧ ∃v. (v ∈ mod(ψ) ∧

∀z. (z ∈ mod(µ)→ v4z 6⊂ v4w))}

sl.tex; 13/07/2012; 11:49; p.11

12

The symmetric set-difference of two interpretations can be expressed
as a boolean operation (where (v4w)i is the i-th propositional variable
of the symmetrical set-difference between v and w)

(v4w)i = ¬(vi ↔ wi)

Set-inclusion of symmetric set-differences is, then, expressed as

v4z ⊆ v4w iff
n∧
i=1

¬(vi ↔ zi)→ ¬(vi ↔ wi)

and consequently, strict inclusion as

v4z ⊂ v4w iff

(
n∧
i=1

¬(vi ↔ zi)→ ¬(vi ↔ wi)

)
∧

¬

(
n∧
i=1

¬(vi ↔ wi)→ ¬(vi → zi)

)

���������
�������
�

���������

�������

	�		�	
�

�

�������

v1 ⊕1
1z1

⊕1
2w1

. . .

. . .

vn ⊕n
1zn

⊕n
2wn

→1
1

→1
2 →n

2

→n
1

v4z 6⊂ v4w

∧n
1

∧n
2

Figure 3. Circuit to decide v4z 6⊂ v4w.

A circuit to compute v4z 6⊂ v4w based on these equations is pre-
sented in figure 3, where ⊕ is the xor-gate and → the implies-gate. We
define the following ordering on gates and inputs:

v1, z1, ⊕1
1, w1, ⊕1

2, →1
1, →1

2,
v2, z2, ⊕2

1, w2, ⊕2
2, →2

1, →2
2, ∧2

1, ∧2
2,

...
vn−1, zn−1, ⊕n−1

1 , wn−1, ⊕n−1
2 , →n−1

1 , →n−1
2 , ∧n−1

1 , ∧n−1
2 ,

vn, zn, ⊕n1 , wn, ⊕n2 , →n
1 , →n

2 , ∧n1 , ∧n2 , ∧, ¬, ∧, ¬

It is easy to check that the forward cross section at each gate or
input of the circuit is at most C where C is a constant, that is, it does
not depend in any way on n. Thus, by the theorem in section 2.4, there
exists a BDD BR representing this circuit, i.e. the negation of the strict
part of the ordering, of size O(n).

Assuming that the BDD BR has variables p,p′,p′′ for w, v, z re-
spectively, the BDD algorithm implementing Borgida’s revision will
be:

sl.tex; 13/07/2012; 11:49; p.12

13

1. Compute Bψ ∧∧∧ Bµ and check it for consistency. If it is consistent,
then this is also the result of the revision (overall complexity is
O(|Bψ| · |Bµ|).

2. Otherwise, the result will be:

Bµ ∧∧∧ ∃∃∃p′. (Bψ[p′/p] ∧∧∧ ∀∀∀p′′. (Bµ[p′′/p] →→→ BR))

Upper bounds for the complexity of these operations are shown
below:

Operation Time Complexity Result Size
Bµ[p′′/p] O(|Bµ|) O(|Bµ|)
∀∀∀p′′. (· →→→ ·) O(|Bµ| · n · 26n) O(22n)
Bψ[p′/p] O(|Bψ|) O(|Bψ|)
∃∃∃p′. (· ∧∧∧ ·) O(|Bψ| · 22n · 24n) O(2n)
Bµ ∧∧∧ · O(|Bµ| · 2n) O(2n)

Therefore, the worst-case time complexity of Borgida’s revision is at
most O(|Bµ| · n26n).

4.3. Satoh

Given two formulas ψ and µ, the set of differences of ψ and µ is defined
as

diff(ψ, µ)
def
=

⋃
v∈mod(ψ)

diff(v, µ)

The revision operator proposed by Satoh in [15] is defined in first-
order logic. Its restriction to finite propositional logic, as described in
[10] is a “global” version of Borgida’s revision. When revising ψ by µ,
instead of considering individually the models of ψ, Satoh’s notion of
minimality relies on both ψ and µ simultaneously. An interpretation
w is a model of ψ ◦ µ if there exists a model v of ψ such that v4w
is a minimal element of diff(ψ, µ). Satoh’s revision is known to satisfy
R1-R5 but not R6 (proved in [10]).

It is easy to express Satoh’s revision as a BDD algorithm, using
much of the construction presented above for Borgida’s operator. The
set of minimal pairs min⊆(diff(ψ, µ)) can be expressed as

min⊆(diff(ψ, µ)) = {v4w | v ∈ mod(ψ) ∧ w ∈ mod(µ) ∧
∀x∀y. (x ∈ mod(ψ) ∧ y ∈ mod(µ)→ x4y 6⊂ v4w)}

Therefore the models of the revision are:

mod(ψ ◦ µ) = {w | w ∈ mod(µ) ∧ ∃v. (v ∈ mod(ψ) ∧
∀x∀y. (x ∈ mod(ψ) ∧ y ∈ mod(µ)→ x4y 6⊂ v4w))}

sl.tex; 13/07/2012; 11:49; p.13

14

It is trivial to modify the circuit for Borgida’s ordering to produce
one that decides x4y 6⊂ w4v. Therefore, there exists a BDD BR of
size O(n) that represents this ordering. We assume that BR contains
variables p,p′,p′′,p′′′ that correspond to w, v, x, y respectively. Then,
the BDD algorithm is

Bµ ∧∧∧∃∃∃p′. (Bψ[p′/p]∧∧∧∀∀∀p′′,p′′′. (Bψ[p′′/p]∧∧∧Bµ[p′′′/p]→→→ BR))

Operation Time Complexity Result Size
Bψ[p′′/p], Bψ[p′/p] O(|Bψ|) O(|Bψ|)
Bµ[p′′′/p] O(|Bµ|) O(|Bµ|)
Bψ[p′′/p]∧∧∧Bµ[p′′′/p] O(|Bψ| · |Bµ|) O(|Bψ| · |Bµ|)
∀∀∀p′′,p′′′. (· →→→ ·) O(|Bψ| · |Bµ| · n · 28n) O(22n)
∃∃∃p′. (· ∧∧∧ ·) O(|Bψ| · 22n · 24n) O(2n)
Bµ ∧∧∧ · O(|Bµ| · 2n) O(2n)

an upper bound for the worst-case complexity of which is O(|Bψ| · |Bµ| ·
n28n).

4.4. Dalal

The revision operator proposed in [6] takes the distance between two
interpretations to be the cardinality of their symmetric set-difference
(also known as the Hamming distance):

d(w, v)
def
= |w4v|

where the | · | operator is set-cardinality. The distance of a formula ψ
and an interpretation v to be:

d(ψ, v)
def
= min{d(w, v) | w ∈ mod(ψ)}

Using this notion of distance, a faithful assignment can be defined as

w ≤ψ v iff d(ψ,w) ≤ d(ψ, v)

The induced ordering is clearly total, reflexive and transitive and thus,
the operator is a revision by the representation theorem for revisions.

The idea behind the BDD formulation of Dalal’s operator comes
from the construction of a circuit that, when given four interpreta-
tions w, v, x and y in the form of binary vectors, decides whether
d(w, x) ≤ d(v, y) by 0 the appropriate boolean value. Thus, in or-
der to compare |w4x| and |v4y| we need a way to count how many
propositional variables are true in each set-difference and compare those

sl.tex; 13/07/2012; 11:49; p.14

15

0

0

0 0 0

0

0

0

0 0

.

.

.

0

S1
1

S1
2

S1
k

. . .

. . .

0

0

0

An
1

An
2

A1
1

A1
2

(v4y)1 (v4y)n
S2
1

S2
2

(w4x)2
Sn
1

Sn
2

. . .

. . .

(w4x)1 (w4x)n

0

.

.

.
.
.
.

. . .

0

0

0
An

kA1
k

.

.

.

S2
k

.

.

.

Sn
k

. . .

. . .

|w4x| ≤ |v4y|

Figure 4. Circuit to decide |w4x| ≤ |v4y|.

counts. These counts will be binary numbers representing how many 1s
occur in those differences. The maximum number of differences possible
is obviously n, thus these binary numbers need only have k = dlog2 ne
bits.

A construction made of n k-bit adders in sequence can be used to
do the counting of bits set to 1 in v4y (see left-half of figure 4). Blocks
labelled Aij are full-adders. These blocks are simple binary circuits that,
given two input bits a, b and a carry bit c, they calculate the sum o
and the produced carry bit c′:

o = ¬(¬(a↔ b)↔ c)

c′ = (a ∧ b) ∨ (c ∧ ¬(a↔ b))

Each column in the first-half of figure 4 forms a k-bit adder. By connect-
ing zeros to all bits of the first argument except the first one, where
(v4y)i is connected, we ensure that the i-th bit of the difference is
added to the second argument, which holds the results of the counting
so far.

In order to compare the count we get from the left-half of figure, we
use a structure made from subtracters Sij in order to count down the 1s
in w4x, seen in the right-half of figure 4. Similar to the full-adder, the
unit Sij is a boolean circuit that given inputs a, b and an input carry c

calculates the difference o and the produced carry bit c′:

o = ¬(¬(a↔ b)↔ c)

sl.tex; 13/07/2012; 11:49; p.15

16

c′ = (b ∧ c) ∨ (¬a ∧ ¬(b↔ c))

If, while counting down, the subtraction produces a carry bit then
we know that |w4x| > |v4y|. Thus, we preserve the existence of
a carry bit by taking the disjunction of all carry bits produced by
the subtraction stages and by inverting that value the circuit decides
|w4v| ≤ |v4y|.

In order to apply the theorem in section 2.4, we define an ordering
over the blocks of the circuit:

(v4y)1, A1
1, . . . , A1

k,
...

(v4y)n, An1 , . . . , Ank ,
(w4x)1, S1

1 , . . . , S1
k, ∨,

...
(w4x)n, Sn1 , . . . , Snk , ∨, ¬

It is easy to see that on each block, the forward cross section is at
most k + C where C is a constant and that the reverse cross section
is always zero. Thus, the forward width of the circuit is k +C and the
bound given by the theorem is 4n2k+C = O(n2), because k = dlog2 ne.2
Therefore there exists a BDD of size O(n2) that represents |w4x| ≤
|v4y|.

In order to express Dalal’s revision as an operation on BDDs, we
have to construct the BDD operation representing the faithful assign-
ment. By its definition we have:

w ≤ψ v iff d(ψ,w) ≤ d(ψ, v)

iff ∃x. (x ∈ mod(ψ) ∧ ∀y. (y ∈ mod(ψ)→ |w4x| ≤ |v4y|))

Since Dalal’s revision is known to satisfy R1-R6 (see [10]) the above
faithful assignment determines uniquely the revision operator. Assum-
ing that the ordering is represented by a BDD BR with variables
p,p′,p′′,p′′′ corresponding to w, v, x, y respectively, then the BDD al-
gorithm for the faithful assignment is:

∃∃∃p′′′. (Bψ[p′′′/p]∧∧∧∀∀∀p′′′′. (Bψ[p′′′′/p]→→→ BR))

Operation Time Complexity Result Size
Bψ[p′′′′/p], Bψ[p′′′/p] O(|Bψ|) O(|Bψ|)
∀∀∀p′′′′. (· →→→ ·) O(|Bψ| · n2 · 28n) O(23n)
∃∃∃p′′′. (· ∧∧∧ ·) O(|Bψ| · 23n · 26n) O(22n)

2 Several optimisations can be made on the circuit appearing in figure 4, by
replacing blocks with known output with appropriate constants. The forward width
of the circuit, however, does not change.

sl.tex; 13/07/2012; 11:49; p.16

17

Therefore, an upper bound for the worst-case time complexity of the
BDD algorithm for the faithful assignment isO(|Bψ|·29n). Thus, in view
of the result of section 4.1, the derived upper bound for the worst-case
time complexity of the revision is O(max{|Bψ| · 29n, |Bµ| · 22n · 24n}) =
O(|Bψ| · 29n).

4.5. Update defined by faithful assignment

Theorem 3 tells us how to compute φ3ψ, given a faithful assignment for
updates. Instead of representing the faithful assignment as an operation
fa from BDDs representing φ to a BDD representing ≤φ, as we did for
revisions, we represent the faithful assignment as a BDD over p,p′,p′′.
This possibility is available to us in the case of updates, but not in the
case of revisions, because the faithful assignment is indexed by a model
in updates and by a set of models in revisions.
B≤ is a BDD over p,p′,p′′. Given values for p′′, it would become a

BDD over p,p′, representing a simple (partial) ordering. For example,
the expression

∃∃∃p′′. (Bφ[p′′/p]∧∧∧B≤)

returns the relation ⋃
w∈mod(φ)

≤w.

That is not what we want, however. Theorem 3 asks us to compute

mod(ψ3µ) =
⋃

w∈mod(ψ)

min≤w(mod(µ))

B≤ can be fed its inputs in any order, and it is convenient to manipulate
its p,p′ parameters first. Using the definition of min is section 2.3 for
partial orderings, we may calculate the BDD

min(B≤, Bµ)

which, given p′′ representing w, computes min≤w(mod(ψ)). This BDD
is still parameterised by p′′, since we need to take the union over all
w ∈ mod(ψ). The final answer for the BDD representing ψ3µ in terms
of the BDDs B≤, Bψ and Bµ is therefore

Bµ ∧∧∧∃∃∃p′′. (Bψ[p′′/p]∧∧∧ min(B≤, Bµ)).

which when expanded gives (where B6< = ¬¬¬(B≤ ∧∧∧¬¬¬B≤[p′/p,p/p′]))

Bµ ∧∧∧∃∃∃p′′. (Bψ[p′′/p]∧∧∧∀∀∀p′.(Bµ[p′/p]→→→ B 6<))

An upper bound for the complexity of the double replacement isO(|B≤|·
n26n). The actual complexity is probably much lower, but a lower

sl.tex; 13/07/2012; 11:49; p.17

18

bound would not change the overall complexity of the algorithm, com-
puted below.

Operation Time Complexity Result Size
B≤[p′/p,p/p′] O(|B≤| · n26n) O(23n)
B 6< O(|B≤| · 23n) O(23n)
∀∀∀p′. (· →→→ ·) O(|Bµ| · 23n · 26n) O(22n)
∃∃∃p′′. (· ∧∧∧ ·) O(|Bψ| · 22n · 24n) O(2n)

Thus, an upper bound for the worst case complexity of update is
O(|Bµ| · 29n).

4.6. Winslett

Winslett introduced an update operator in [18]. The ordering used
in this operator is defined using the set-inclusion of symmetric set-
differences

a ≤w b iff w4a ⊆ w4b
which is, clearly, a partial order and the mapping is a faithful assign-
ment. As noted in [10], Winslett’s operator coincides with Borgida’s
when ψ and µ are inconsistent. In other words, in Winslett’s update
the second step of the algorithm for Borgida’s revision is always used,
so our results in section 4.2 carry over here unchanged.

5. Fault Diagnosis

In this section we present a formulation of fault diagnosis as a special
kind of belief revision, along with experimental results gathered from an
implementation of that algorithm. Our goal is not to formulate a fully-
fledged theory for fault diagnosis, nor to prove that the best method
for diagnosis is by belief revision. What we aim at is to demonstrate
the BDD algorithms we have presented, in a medium-sized example.
To that end, we formulate a method for fault diagnosis that works
in a well-studied class of systems, combinational boolean circuits, and
investigate its complexity in practice.

5.1. Fault Diagnosis of Boolean Combinational Circuits

Physical systems can develop faults that make them deviate from their
specifications. Given a description of a physical system and an ob-
servation of the system (usually, an input-output observation) that is
inconsistent with the specification, the problem of fault diagnosis is to
deduce which components of the system are faulty.

sl.tex; 13/07/2012; 11:49; p.18

19

To use revision for fault diagnosis [14, 18, 6], we let ψ1 be a formula
describing the circuit’s operation on the assumption that the compo-
nents are not faulty, and ψ2 be the assertion that the components are
not faulty. Let µ be the observation made of the system. We perform
the revision (ψ1 ∧ ψ2) ◦ µ subject to the integrity constraint ψ1. The
result is a set of possible fault cases.

Since we are interested in implementations of belief change in a
finite propositional language, a natural application is fault diagnosis of
combinational boolean circuits. Such a circuit consists of a finite num-
ber g of unary or binary gates.3 We define nI propositional variables Ii
(1 ≤ i ≤ nI) corresponding to the primary inputs of the circuit (at most
2g). For each gate i, we define a propositional variable Ni, its normality
predicate, as well as Oi, its output value4. The input(s) of each gate will
either be primary input(s) or output(s) of other gates. The circuit has
also nPO primary outputs, denoted as POi (1 ≤ i ≤ nPO), which form
a subset of the output values Oi (at most g if no repetitions of results
are allowed). Output values of gates not belonging to the set of primary
outputs are called intermediate results.

Therefore, for a circuit of g gates we define nI + 2g (at most 4g)
propositional variables. However, not each valuation of those nI + 2g
variables is a possible state the circuit can be found in; if, in some
valuation, the normality predicate of a gate is true then its behaviour is
uniquely determined and thus, its output can only assume one value out
of the two possible. The set of interpretations allowed under the spec-
ification of the circuit is the set of valuations that satisfy its integrity
constraints

IC
def
=

g∧
i=1

Ni → (Fi ↔ Oi)

where Fi is a boolean expression defining the expected output in terms
of the inputs of gate i. The integrity constraints for a circuit that
computes ¬(I1 ∧ I2), for example, are

IC = (NAND → (I1 ∧ I2 ↔ OAND)) ∧ (NNOT → (¬OAND ↔ ONOT))

The initial belief will be the conjunction of the integrity constraints
and of the belief that all gates are not faulty :

IB
def
= IC ∧

(
g∧
i=1

Ni

)
3 The presented method can be easily generalised for gates of any (constant) arity

and of any (constant) number of outputs.
4 Since the gate may be faulty, its output value need not be uniquely determined

by its inputs. Thus we do need a separate propositional variable for its output value.

sl.tex; 13/07/2012; 11:49; p.19

20

An observation is a description of observed primary input and primary
output values

OBS
def
=

nI∧
i=1

(Ii or ¬Ii) ∧
nPO∧
j=1

(POj or ¬POj)

Our goal is to define a revision operator that given an initial belief
and an observation of the above forms, returns an epistemic state de-
scribing which gates if taken as faulty, explain the given observation. Of
course, the returned formula need not indicate only one combination of
faulty gates; there could be several ways in which a faulty circuit can
produce a given output.

We define the revision operator using a suitable notion of minimality.
Intuitively, we want to select all those interpretations that are models
of the observed behaviour, while making the smallest change to the
persistent information about the circuit, i.e., the normality predicates.
Thus, a suitable notion of minimality is the set-inclusion of differences,
but restricted on normality predicates. We do not use a variant of
Dalal’s operator because that would imply that we are only interested
in the minimum number of faults necessary to explain the observation.

We choose a variant of Borgida’s operator to model this notion of
closeness. This variant is identical to Borgida’s version, except for the
ordering on interpretations. If x, y, z are interpretations, the ordering
is defined as:

x ≤z y iff

(
nI∧
i=1

Ii(x)↔ Ii(y)

)
∧

nPO∧
j=1

POj(x)↔ POj(y)

 ∧
(

g∧
k=1

¬(Nk(z)↔ Nk(x))→ ¬(Nk(z)↔ Nk(y))

)
where Ni(x) denotes the value of Ni at the interpretation x, and simi-
larly for other propositional variables. Thus, for two interpretations to
be comparable, they should imply the same input-output behaviour,
hence the first two conjuncts of the above formula. Note that interme-
diate results do not appear in the definition of the ordering, as they are
not observable. The third conjunct formalises our notion of minimal
changes; we are interested in the minimal set of gates (with respect to
set-inclusion) that, when faulty, concord with the observation.

Under this revision operator, protection of integrity constraints is
achieved by revising our initial belief not just with the observation,
but with the conjunction IC ∧OBS.

The result of the revision will include information about the particu-
lar observation we revised with, in view of the axiom R2. In particular,

sl.tex; 13/07/2012; 11:49; p.20

21

the values of primary inputs and outputs in the observation will be
implied by the resulting epistemic state. Since in fault diagnosis we are
only interested in information about the normality predicates of the
circuit, we need to eliminate from the resulting belief all knowledge
about propositional variables other than normality predicates. We use
(boolean) existential quantification to eliminate all propositional vari-
ables that carry irrelevant information from the result of the revision.
This operation, called elimination, is described in [9].

5.2. BDD Formulation

The ordering and the negation of its strict counterpart are easily con-
structible as circuits similar to the one presented in section 4.2. Thus,
by the theorem in section 2.4, the BDD B 6< representing 6< (where ≤
is defined by the formula above) is of size O(nI + 2g) = O(g).

The BDD BIC is, of course, dependent on the specific circuit in
question. Therefore we cannot give a bound on its size. However, by
using the variable ordering I1, . . . , InI , N1, O1, . . . , Ng, Og we ensure an
empirically compact representation of BIC.

The BDD for the conjunction of all normality predicates Ni can
be easily shown to have a size of O(g) irrespective of the variable
ordering used. Thus the BDD for the initial belief BIB will be of size
O(|BIC| · g), by the apply algorithm. Similarly, the BDD BOBS for
the observation will have a size of O(g) and the conjunction with the
integrity constraints BIC ∧∧∧BOBS will be of size O(|BIC| · g).

Therefore, the models of the revision are

mod(IB ◦ (IC ∧OBS)) = {w | w ∈ mod(IC ∧ OBS)∧
∃v. (v ∈ mod(IB) ∧ ∀z. (z ∈ mod(IC ∧ OBS)→ z 6<v w))}

and the models of the diagnosis are obtained by quantifying away all
variables except normality predicates:

mod(DIAG) = ∃I1 . . . ∃InI∃O1 . . . ∃Og.mod(IB ◦ (IC ∧ OBS))

The BDD algorithm is:

∃∃∃p〈I1,...,InI ,O1,...,Og〉. ((BIC ∧∧∧BOBS)∧∧∧
∃∃∃p′. (BIB[p′/p]∧∧∧∀∀∀p′′. ((BIC ∧∧∧BOBS)[p′′/p] →→→ B6<)))

An upper bound for the worst-case time complexity of which is O(|BIC|·
g2224g).

sl.tex; 13/07/2012; 11:49; p.21

22

5.3. Implementation and Experimental Results

As mentioned earlier, belief change operations are known to be very
expensive in the worst case. Since the complexities reported up to
this point concern only the worst-case, and taking into account the
fact that the known bounds on BDD operations such as quantification
are still not tight, we proceeded with a medium-scale implementation
of the algorithm presented in the previous section. Results regarding
the complexity of that algorithm were gathered by trying diagnosis
of random observations. Those results along with details about the
implementation are presented below.

The implementation uses the BuDDy package for the manipulation
and construction of BDDs [12]. This package, as most of the packages
available, offers heuristics for automatically re-ordering the variables
of BDDs in order to attain lower space complexities. This capability is
very important in an application for fault diagnosis on arbitrary cir-
cuits, since the BDD for the integrity constraints is of an unpredictable
size and can benefit from automatic re-ordering. However, having cho-
sen a specific circuit to perform our experiments on, an n-bit adder, we
did not make use of this feature.

We have assembled a small collection of fairly general tools that
can be used for diagnosis of any combinational boolean circuit. The
chosen circuit we have tested, the n-bit adder, is a circuit that leads to
low complexities of the BDDs involved in diagnosis. However, if we had
selected a circuit that knowingly lead to exponential complexities, then
the average case for diagnosis (and indeed, any case) would be provably
exponential. The BDD for the integrity constraints BIC, has linear
complexity for the n-bit adder. Using a standard design for adders,
each bit of the adder amounts to 5 gates, thus an upper bound for
the worst-case complexity of the fault-diagnosis algorithm on an n-bit
adder is O(n32120n), in view of the result in the previous section.

We attempted two kinds of tests. In the first one, n-bit adders of
successively larger n were generated, and each one was diagnosed with
a set of uniformly distributed random observations. The number of
possible observations for n bits is 23n. A constant percentage of those
23n observations were sampled and fed to the diagnosis algorithm.
The space complexity of each diagnosis was recorded and an average
complexity for each n was produced.

The above-mentioned algorithm, when fed with an observation that
is consistent with the integrity constraints, does not revise the normal-
ity predicates. In this special case, it can be easily proved that there is
just one model of IC∧OBS, and that the algorithm exhibits a complex-
ity much lower than in the worst-case. However, the number of consis-

sl.tex; 13/07/2012; 11:49; p.22

23

tent observations for an n-bit adder is 22n, thus the ratio of consistent
to all observations is 1/2n. Therefore, as n increases, the probability
of us sampling a consistent observation decreases exponentially, thus
increasing the measured average complexity.

Unfortunately, sampling a fixed percentage of an exponentially sized
population leads in exponential time taken for the tests. Indeed, at
7 bits, diagnosing 10% of the total number of observations possible
amounts to running the diagnosis algorithm 209716 times, and for 8
bits this number is multiplied by 8. Due to the excessive time taken for
the fixed-percentage tests, we could only run them for up to 7 bits. The
results for this test are shown below (space complexity is measured in
BDD nodes produced):

Bits Average Space Number of

Complexity Samples

1 234 1

2 886 7

3 1906 52

4 3229 410

5 4861 3277

6 6804 26215

7 9052 209716

In order to get an idea of the complexities concerned in larger cir-
cuits, we tried a second test by running our algorithm on 1000 samples
for each bit-size. Admittedly, this approach reduces exponentially the
accuracy of our averages in the number of bits. However, by running
this test multiple times we have empirically verified that the variance
of the results is not significant.5 The average space complexity (in BDD
nodes produced) and the average time complexity (in ms) are shown
in figures 5 and 5 respectively.

As with any empirical investigation, these results cannot be taken
as conclusive evidence of tractability or intractability. However, we did
use a nonlinear least squares method (Marquardt-Levenberg algorithm)
to fit a number of classes of functions to the above curves. To our best
knowledge, the best fit was a quadratic function, being significantly
better that exponential and sub-exponential non-polynomial ones. In
addition, in the case of space complexity, the resulting quadratic func-
tion from fitting the first or last 15 data points predicts reasonably well
the remaining 45.

5 In addition, the ratio of standard deviation to average never exceeded 5% in
the case of space complexity and 10% in the case of time complexity.

sl.tex; 13/07/2012; 11:49; p.23

24

0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

Average Number of BDD Nodes Produced

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60

Average Time (in ms)

Figure 5. Average number of BDD nodes produced and average time (in ms) spent
per diagnosis in the number of bits.

What has been demonstrated, we believe, is the practicality of our
approach, contrary to the order of magnitude of the upper bounds cal-
culated in the previous sections; for fault diagnosis, with a moderately-
sized computer system one can perform single runs of our algorithm
on reasonably large circuits. In particular, we have successfully run our
program several times on adders of 1000 bits, with each run taking 20
minutes on average. Note that in the model presented above, a 1000-bit
adder leads to a state-space of 212000 interpretations.

6. Conclusions and Further Work

We presented a formulation of a variety of belief change operators on a
finite propositional language as algorithms on BDDs. Moreover, upper
bounds for their worst-case complexities were calculated. These bounds
do not provide conclusive evidence for the efficiency of the proposed
methods and can only do so when tight bounds of the worst-case
complexity of BDD algorithms (especially andExists) are proved.

In the context of verification, the use of BDDs has greatly ex-
tended the size of systems that can be practically verified, in spite
of the worst-case complexity of model-checking (the problem of model-
checking a CTL formula is PSPACE-complete). This fact warranted us
to investigate empirically the average-case complexities of the presented
algorithms in a fault-diagnosis case study. We found them to be much
better than their expected worst case.

An obvious impediment to the applicability of the methods we have
presented is the limited expressive power of propositional logic. As
already mentioned, BDD algorithms are routinely used in verification,
in which the underlying language is CTL, a temporal modal logic. In
general, many systems of modal logic give rise to possible applications
of belief change (concept revision in description logics, feature integra-

sl.tex; 13/07/2012; 11:49; p.24

25

tion in temporal modal logics as belief update, knowledge revision in
epistemic logics).

Moreover, the expressivity of several modal logics seems to be a sat-
isfactory compromise between propositional and first-order logic, while
retaining several important characteristics such as decidability. Thus,
a natural continuation of our current work is the study of belief change
with a modal logic as base language and in particular the connections
of belief change with the semantics of the underlying logic.

References

1. Andersen, H. R.: 1998, ‘An Introduction to Binary Decision Diagrams’. http:
//www.it.dtu.dk/~hra. Department of Information Technology, Technical
University of Denmark, Lecture Notes.

2. Borgida, A.: 1984, ‘Intelligent Handling of Exceptions in Information Systems’.
In: Workshop on Expert Database Systems, University of South Carolina, 1984,
Vol. 2.

3. Bryant, R. E.: 1986, ‘Graph-Based Algorithms for Boolean Function Manipu-
lation’. IEEE Transactions on Computers C-35(8), 677–691.

4. Bryant, R. E.: 1992, ‘Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams’. ACM Computing Surveys 24(3), 293–318.

5. Burch, J. R., J. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang: 1990,
‘Symbolic model checking: 1020 states and beyond’. In: IEEE Symposium on
Logic in Computer Science.

6. Dalal, M.: 1988, ‘Investigations Into a Theory of Knowledge Base Revision:
Preliminary Report’. In: Proceedings of the Seventh National Conference on
Artificial Intelligence, Vol. 2. St. Paul, Minnesota, pp. 475–479.

7. Gärdenfors, P.: 1988, Knowledge in Flux: Modeling the Dynamics of Epistemic
States. Cambridge, MA: MIT Press, Bradford Books.

8. Huth, M. R. and M. D. Ryan: 2000, Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press.

9. Katsuno, H. and A. O. Mendelzon: 1989, ‘A Unified View of Propositional
Knowledge Base Updates’. In: N. S. Sridharan (ed.): Proceedings of the 11th
International Joint Conference on Artificial Intelligence. Detroit, MI, USA, pp.
1413–1419.

10. Katsuno, H. and A. O. Mendelzon: 1991, ‘Propositional Knowledge Base
Revision and Minimal Change’. Artificial Intelligence 52(3), 263–294.

11. Katsuno, H. and A. O. Mendelzon: 1992, ‘On the Difference between Updating
a Knowledge Base annd Revising it’. In: P. Gärdenfors (ed.): Belief Revision.
Cambridge University Press, pp. 183–203.

12. Lind-Nielsen, J., ‘BuDDy: Binary Decision Diagram Package Release 1.8’.
http://www.it.dtu.dk/research/buddy.

13. McMillan, K. L.: 1993, Symbolic Model Checking. Kluwer Academic Publishers.
14. Reiter, R.: 1987, ‘A theory of diagnosis from first principles’. Artificial Intelli-

gence 32, 57–95. Reprinted in in Readings in Nonmonotonic Reasoning, M. L.
Ginsberg (ed.), Morgan Kaufman, San Francisco, CA. 1987, pp. 352–371.

15. Satoh, K.: 1988, ‘Nonmonotonic Reasoning by Minimal Belief Revision’. In:
I. for New Generation Computer Technology (ICOT) (ed.): Proceedings of the

sl.tex; 13/07/2012; 11:49; p.25

26

International Conference on Fifth Generation Computer Systems. Volume 2.
Berlin, FRG, pp. 455–462.

16. Somenzi, F., ‘CUDD: CU Decision Diagram Package Release 2.3.0’. http:

//vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html.
17. Williams, M.-A.: 1997, ‘Anytime Belief Revision’. In: Fifteenth International

Joint Conference on Artifical Intelligence. pp. 74–81.
18. Winslett, M.: 1988, ‘Reasoning About Action Using a Possible Models Ap-

proach’. In: Proceedings of the Seventh National Conference on Artificial
Intelligence. pp. 89–93.

sl.tex; 13/07/2012; 11:49; p.26

